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Abstract

During 2013-2014, China launched a nation-wide real-time air quality monitoring and
disclosure program, a watershed moment in the history of its environmental regulations.
We present the first empirical analysis of this natural experiment by exploiting its
staggered introduction across cities. The program has transformed the landscape of
China’s environmental protection, substantially expanded public access to pollution
information, and dramatically increased households’ awareness about pollution issues.
These transformations in turn triggered a cascade of behavioral changes in household
activities such as online searches, day-to-day shopping, and housing demand when
pollution was elevated. As a result, air pollution’s mortality cost was reduced by nearly
7% post the program, amounting to an annual benefit of RMB 120 billion. The resulting
benefit is an order of magnitude larger than the cost of the program and the associated
avoidance behavior. Our findings highlight considerable benefits from improving access
to pollution information in developing countries, many of which are experiencing the
world’s worst air pollution but do not systematically collect or disseminate pollution
information.
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1 Introduction

Economists have long emphasized the importance of information in decision making. In
almost any decision environment, perfect information is necessary to ensure individually
optimal choices and general market efficiency (e.g., Stigler, 1961; Hirshleifer, 1971; Grossman
and Stiglitz, 1976). However, information as an input to decision making is often imperfect in
real-world settings, especially for information with public good properties (such as forecasts
on weather and pollution and disease prevention). The difficulties in appropriating private
returns for this type of information call for government intervention. Understanding the
value of providing such information is crucial for the optimal level of government investment
in information gathering and reporting (Nelson and Winter, 1964; Craft, 1998).

There is little research on the value of providing pollution-related information in devel-
oping countries despite them experiencing the worst pollution in the world, largely because
pollution information is either not collected or deliberately withheld by the government.1

Consequently, questions like whether citizens can engage in effective pollution avoidance,
what is the value of information, and how much public support is optimal remain largely
unanswered. These issues are pressing since public funding for improving information infras-
tructure often competes with meeting basic needs in health care, nutrition, and education
for the poor.

China provides a perfect setting for studying the role of pollution information. During
the 2000s, its daily average concentration of fine particulate matter (PM2.5) exceeded 50
ug/m3, five times over the World Health Organization guideline. Despite the hazardous
level of exposure, a comprehensive monitoring network was non-existent. Dissemination of
the scant data that were collected was politically controlled and, in many cases, forbidden. In
2013, amid the social outcry on the lack of transparency and a dramatic shift in government
position on air pollution, China launched a nation-wide real-time air-quality monitoring
and disclosure program (henceforth, the information program), a watershed moment in the
history of its environmental regulations. The emergence of the information program provides
a unique opportunity to study changes in household behavior upon a sharp and permanent
increase in the availability of pollution information. We present the first empirical analysis
of this natural experiment by exploiting its staggered introduction across cities, using the
most comprehensive database ever complied on social awareness, local air pollution levels,
economic activities, and health outcomes that covers the period both before and after the
information program.

1Among the 20 countries with the worst PM2.5 level in 2018 (annual median > 46 ug/m3), only four
(Nepal, Saudi Arabia, India, and China) installed a pollution monitoring system.
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We first document that the information program has profoundly transformed the land-
scape of public access to pollution information and dramatically increased households’ aware-
ness about pollution issues. The frequency of air-pollution related articles in People’s Daily,
the government’s official newspaper, rises from less than once-per-week to daily. The num-
ber of mobile phone applications (“apps”) that stream air pollution data to users surges by
500%, four times faster than the growth of other apps. The term “smog” (“wu mai” in Chi-
nese) became for the first time a buzzword in social media immediately after the program
was launched. Purchases of air purifiers more than double one year after the information
program is implemented in a city.

In turn, these changes in information access and public awareness have triggered a cas-
cade of short-run and long-run behavioral changes in household activities such as day-to-day
shopping and housing demand when pollution is elevated. In our short-run analysis, we
exploit the universe of credit and debit card transactions in China from 2011 to 2015 to
build a measure of outdoor purchase trips. Linking purchase activities to ambient air pollu-
tion, we show that the information program has boosted pollution avoidance by triggering
a negative purchase-pollution elasticity of 3%. As expected, avoidance concentrates in plau-
sibly “deferrable” consumption categories, such as supermarket shopping, outdoor dining,
and entertainment, rather than in “scheduled” trips such as bill-pays, business-to-business
wholesales, and cancer treatment sessions.

Our long-run analysis focuses on the housing market. Leveraging geo-location information
from the near-universe of new home sales in Beijing during 2006-2014, we examine changes in
the relationship between housing prices and local pollution levels induced by the information
program using two different research designs. First, we employ the pixel-averaging technique
(“oversampling”) to enhance the original satellite data’s spatial resolution from 10-by-10 km
to 1-by-1 km (e.g., Fioletov et al., 2011; Streets et al., 2013). The high-resolution pollution
measure allows us to conduct cross-sectional comparison within fine geographic units, such
as community (geographically close to a Census block-group in the U.S.). We estimate a
home value-pollution elasticity of -0.6 to -0.8 post disclosure. In contrast, the elasticity is
small and statistically insignificant (-0.10 to 0.09) before the information program.

Second, we link China’s emission inventory database with business registries to identify
locations of major polluters in Beijing: the 10% of facilities that account for 90% of total
industrial air emissions. These big polluters tend to be visible and well-known landmarks in
the city. This allows us to estimate separate “distance gradient” curves (e.g., Currie et al.,
2015) that express the home value as a function of proximity to the nearest major polluter
before and after the information program. While there is no correlation between housing
prices and proximity to polluters prior to the program, houses within 3 km of a major
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polluter depreciate 27% afterward, which corresponds to 42% of the inter-quartile range of
the housing price dispersion. Thus, the information program facilitates the capitalization
of air quality in the housing market, potentially improving residential sorting and social
welfare.

These behavior changes could greatly mitigate the devastating consequences of China’s
elevated pollution. Our last set of empirical analyses examines changes in the mortality-
pollution relationship as access to information improves. Using nationally representative
mortality data from the Chinese Center for Disease Control and Prevention (CDC), we find
a 5 percentage-point reduction in the mortality-pollution elasticity (especially for cardio-
respiratory causes) post monitoring. Assuming a linear dose-response function and com-
bining our findings with existing estimates on the causal effect of pollution on mortality in
China (e.g., Ebenstein et al., 2017), access to pollution information has reduced premature
deaths attributable to air pollution exposure by nearly 7%. It generates a health benefit that
is equivalent to a 10 ug/m3 reduction in PM10, with an associated social Willingness-to-Pay
in the order of RMB 120 billion annually based on recent estimates in the literature (Ito and
Zhang, 2018). By our calculation, such social benefits outweigh the costs of defensive invest-
ments (such as air purifier purchases) and administrative costs of deploying and maintaining
the program by at least an order of magnitude, making the information program one of the
most successful environmental policies in a developing country.

We make three main contributions to the literature. First, our study provides to our
knowledge the first empirical estimate of the value of a nation-wide program on pollution
monitoring and disclosure.2 Our empirical findings highlight the considerable benefits in
collecting and disseminating pollution information in developing countries, many of which
are experiencing the worst mortality damage from pollution exposure in the world (Landrigan
et al., 2018). The success of China’s program provides a benchmark for policy discussions
(e.g., the cost-benefit analysis) on building information infrastructure in these countries.

Second, our study shows that information is a key determinant of avoidance behavior
and defensive spending. Consumer activities (online searches, day-to-day shopping, and
housing demand) exhibit little response to pollution until such information becomes widely
available. This contrasts with the implicit assumption of perfect information on pollution
exposure in the existing literature that uses revealed-preference to estimate the value of
non-marketed environmental goods. To the extent that access to information is lacking in
developing countries, this assumption underestimates consumers’ true willingness-to-pay for

2A similar literature quantifies the value of weather forecasts, another type of government-provided in-
formation, as an important input to production decisions (Lave, 1963; Craft, 1998; Shrader, 2018; Jagnani
et al., 2018).
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environmental goods. Our findings provide a potential explanation for why environmental
quality is severely undervalued in developing countries (Greenstone and Jack, 2015) and why
the dose relationship between pollution and mortality can be different across developed and
developing countries (Arceo, Hanna and Oliva, 2015).

Third, this study contributes to the broad empirical literature on the role of information in
consumer choices. Growing evidence suggests that consumers misperceive product attributes
in a wide range of contexts such as food nutritional contents (Bollinger, Leslie and Sorensen,
2011), insurance policy costs (Kling et al., 2012), vehicle fuel economy (Allcott, 2013), re-
tirement savings (Bernheim, Fradkin and Popov, 2015), taxation (Chetty, Looney and Kroft,
2009), and energy prices (Shin, 1985; Ito, 2014). Information provision programs can improve
consumers’ perception of product attributes (Smith and Johnson, 1988; Oberholzer-Gee and
Mitsunari, 2006), change consumer choices (Hastings and Weinstein, 2008; Dranove and Jin,
2010; Jessoe and Rapson, 2014; Wichman, 2017), and drive up average product quality (Jin
and Leslie, 2003; Bai, 2018). In the context of air quality, recent studies have documented
behavioral responses to pollution exposure in both the short- and long-terms. Our analysis
shows that these behavioral responses could lead to improved health conditions and we use
the associated benefits in dollar terms to provide a lower bound estimate of the value of
pollution information.3

The rest of this paper is organized as follows. Section 2 reviews institutional details
on the information program and describes data sources. Section 3 presents the theoretical
framework. Section 4 documents the dramatic changes in information access and awareness
after the program. Section 5 employs a unified framework to examine the effect of the
program on short- and long-term avoidance behavior and mortality. Section 6 calculates the
value of information. Section 7 concludes.

2 Institutional Background and Data

2.1 Environmental Regulations

The real-time PM2.5 monitoring and disclosure program started in 2013 is a watershed mo-
ment in the history of China’s environmental regulations. The program brought about a
sharp and sudden change in the access of pollution information for the average residents and

3 Cutter and Neidell (2009); Graff Zivin and Neidell (2009); Sun, Kahn and Zheng (2017); Zhang and Mu
(2018) document changes in short-run avoidance and defensive spending while Chay and Greenstone (2005);
Banzhaf and Walsh (2008); Bayer, Keohane and Timmins (2009); Mastromonaco (2015); Chen, Oliva and
Zhang (2017); Freeman et al. (2019) show housing and migration decisions in the long-term in response to
pollution information.
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drastically enhanced the public awareness of the health impact of PM2.5. To help understand
this change, we provide a brief history of China’s environmental regulations.

Environmental Regulations Prior to 2012 China established its first national ambi-
ent air quality standards (NAAQS) in 1982 which set limits for six air pollutants including
Total Suspended Particulate (TSP), coarse particulate matter (PM10), sulfur dioxide (SO2),
nitrogen oxides (NOx), carbon monoxide (CO), and ozone (O3). The standards were subse-
quently amended in 1996, 2000, and 2012. The 1996 amendment strengthened and expanded
the standards to reflect the improvement in abatement capabilities while the 2000 amend-
ment removed NOx from the list and relaxed the standards for NO2 and O3 in response to
non-compliance due to the increase in automobile usage.

Throughout much of the 1980’s to early 2000’s, the major threat of air quality was
considered to be SO2 due to coal burning. As acid rain caused widespread and visible
damages to crops, forest, and the aquatic environment, the control of acid rain and SO2

emissions was the focus of the environmental regulations (Yi, Hao and Tang, 2007). The
prominent regulation is the two-control zone policy (TCZ) implemented from 1998 where
prefectures with high PH values of precipitation or SO2 concentration were designated as
either the acid rain control zone (located in the south) or the SO2 control zone (mostly in the
north). A series of measures were imposed in these zones such as mandating the installation
of flue gas desulfurization in coal-fired power plants and closing down the small coal-fired
power plants (Tanaka, 2015). As a result of aggressive emissions control and clean energy
policies, the average SO2 concentration was reduced by nearly 45% from 1990 to 2002, with
the majority of the cities achieving the national standard by 1998 (Hao and Wang, 2005).4

Starting from the early 2000, the source of air pollution shifted from coal burning to
mixed sources, and particulate matter (PM) rather than SO2 became the major pollutant.
This shift was driven by the fact that while the emissions from coal-fired power plants have
reduced significantly, the emissions from automobiles, industrial facilities, and construction
have increased due to the dramatic growth in vehicle ownership, industrial activities (after
China’s WTO accession in 2001) and rapid urbanization. The regulatory focus was shifted
to reducing urban air pollution through city-level efforts (Ghanem and Zhang, 2014), which
proved to be ineffective due to the strong competing incentives for economic growth at the
local level together with the weak monitoring and enforcement from the central government.
Episodes of extreme air pollution were common especially during winters in many urban
centers. U.S. Embassy in Beijing and consulates in Guangzhou and Shanghai started to

4The fraction of the acid rain zone in China’s total terrain has decreased from the peak level of about
30% to 8.8% in 2015.
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report hourly PM2.5 in 2008 based on monitoring stations installed on-site. The PM2.5 read-
ings from these sites were often inconsistent with the official pollution reports and became
sources of diplomatic tensions.5

Limited Pollution Awareness Prior to 2013 While air pollution has been a long-
standing issue, public access to the daily pollution exposure was almost absent prior to
2013. Although the Ministry of Environmental Protection (MEP) publishes the daily Air
Pollution Index (API) data for major cities starting from 2000, the reported API prior to the
information program only partially reflected true air quality because it did not incorporate
PM2.5, which was the major air pollutant in many Chinese cities since the 2000s.6 In addition,
the API index was not incorporated into the mass media publications or broadcasts. Finally,
the API data was gathered and reported by local environmental bureaus whose leaders were
appointed by the local governments. The MEP did not control the monitoring stations
and had limited ability to monitor the data quality. Recent research has found evidence of
widespread manipulation of the API data (Andrews, 2008; Chen et al., 2012; Ghanem and
Zhang, 2014; Greenstone et al., 2019).

While the dominant pollutant had shifted from SO2 to particulate matter in the 2000’s,
there was no systematic collection of PM2.5 data. As a result, consumer awareness of PM2.5

was extremely limited prior to 2013. Poor visibility due to high levels of PM2.5 was often
characterized as fog rather than smog by both government agencies and the media. For
example, newspaper headlines as well as China Meteorological Administration characterized
flight delays and cancellations as being caused by widespread and dense fog in Beijing and
Northern China in November 27, 2011. In fact, this was a major pollution event as shown in
Figure 1 that displays the NASA satellite view of China and the high AOD measure from the
NASA MODIS algorithm. A similar pollution event occurred in December 4-6, in 2011 when
it was again covered as dense fog by major news media including China Central Television,
the predominant state television broadcaster in Mainland China, and popular website such
as sina.com.

The lack of awareness of PM2.5 and fog-smog confusion among the public and the media
were reflected upon by the prominent journalist-turned-environmentalist Chai Jing in her

5The then-vice minister of the Ministry of Environmental Protection (MEP), Wu, Xiaoqing, openly
requested U.S. embassy and consulates to stop releasing PM2.5 data from their monitoring stations during the
press conference on the World Environment Day in 2012. He stated that the public release of air-quality data
by the consulates “not only doesn’t abide by the spirits of the Vienna Convention on Diplomatic Relations and
Vienna Convention on Consular Relations, but also violates relevant provisions of environmental protection.”
(New York Times, June 5, 2012).

6API coverts the concentration of PM10, SO2, and NO2 into a single index through a set of piece-wise
linear transformations. The dominant pollutant on each day determines the level of API.
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high-profile documentary on China’s air pollution titled Under the Dome released in February
2015: “... I go back and check the headline from that day’s newspaper (on December 1st,
2004): ‘Fog at Beijing Capital Airport Causes Worst Flight Delays in Recent Years’. We
all believed that was fog back then. That’s what we called it.... as a former journalist, I
started to blame myself because for all those years I had been reporting stories on pollution
all across the country, I always thought pollution was about mining sites and those places
near factories spewing smoke plumes. I never thought the skies that we saw every day could
be polluted.”7

The Information Program and Environmental Regulation Post 2012 In 2012, the
MEP revised the NAAQS and for the first time in China’s history set the national standards
for PM2.5. The new standards were slated to take effect nationwide in 2016 but some cities
and regions were required to implement the standards earlier.8 To help achieve the standards,
China’s State Council released the Action Plan on Air Pollution Prevention and Control in
September 2013, which set specific targets for PM2.5 reduction from 2013 to 2017 and outlined
ten concrete policies such as promoting the role of market-based mechanisms and establishing
monitoring and warning systems to cope with severe air pollution events.9 In addition to this
action plan, for the first time in the history of national five-year plans, the 13th Five-year
Plan required prefecture-level cities or higher to reduce the PM2.5 concentration by 18% from
2015 to 2020.

The recognition of PM2.5 as a major pollutant and the aggressive policies to reduce PM2.5

concentration marked an important shift of the China’s long-standing strategy of prioritizing
economic growth over environmental concerns and happened under the backdrop of China’s
12th and 13th Five-Year Plans that set pollution reduction as one of the bureaucratic hard
targets in the cadre evaluation system (Wang, 2017).10 To effectively monitor local air pol-
lution levels and to address the pitfalls of the previous reporting system of API (Greenstone

7The documentary has been compared with Al Gore’s An Inconvenient Truth in terms of its style and
impact. The film was viewed over 150 million times on popular website tencent.com within three days of its
release, and viewed a further 150 million times by the time it was taken offline by the government four days
later.

8The cities in Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta as well
as provincial capitals are required to implement the standards in 2012 while all prefecture-level cities are
required to implement the standards by 2015.

9The plan may have been China’s most influential and successful environmental policy during the past
decade. Under this plan, PM2.5 reduced by over 37% in Beijing-Tianjin-Hebei Region, 35% in the Yangtze
River Delta, 26% in the Pearl River Delta, and over 30% on average in over 70 major cities (Huang et al.,
2018).

10The mandate to reduce air pollution comes from the highest level of government officials. Premier
Li, Keqiang described smog as “nature’s red-light warning against inefficient and blind development” and
declared war against pollution at the opening of the annual meeting of People’s congress in March 2014. The
phrase, war on pollution, has been quoted by President Xi, Jinping in national meetings since then.
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et al., 2019), the MEP implemented a nationwide monitoring and disclosure program starting
from 2013 with the focus of building a scientific and efficient system to monitor air quality
and disclose publicly the real-time data.

The program contained two major provisions. First, it initiated continuous monitor-
ing of major air pollutants, including PM2.5, PM10, O3, CO, NO2, and SO2. This led to
the installation of a comprehensive network of monitors which were built in three waves.
In the first wave, monitoring networks were built between May and December 2012 in 74
major cities that represented the country’s key population and economic centers (the Beijing-
Tianjin-Hebei Metropolitan Region, the Yangtze River Delta, the Pearl River Delta, Direct-
administered municipalities, and provincial capitals). Real-time readings on all major air
pollutants were posted online and ready for streaming by December 31, 2012. By October
31, 2013, the second wave was completed, adding 116 cities from the list of the Environ-
mental Improvement Priority Cities, and the National Environmental Protection Exemplary
Cities.11 In the final wave, achieved by November 20, 2014, the program reached the re-
maining 177 cities. The roll-out of the program is plotted in Figure 2. By the end of the
third wave, the program had built more than 1,400 monitoring stations in 337 cities cover-
ing an estimated 98% of the country’s population. A key feature of the monitoring roll-out
is that it is based on cities’ administrative hierarchy and well-known groupings that were
designated long before the information program was initiated. The pre-determined nature
of these groupings indicates that there is little scope of selecting cities into different roll-out
waves based on unobservable characteristics or future projections of outcome variables.12

Second, the information program established a dissemination system to report a real-time
Air Quality Index (AQI) that is on a single scale of 0-500. Monitoring results are displayed
in real-time on MEP’s website. Different from the old-generation monitoring stations used
by the local environmental bureaus to report API, the new monitors are under the direct
control of MEP. Data that are collected are directly transmitted to MEP’s information center
in real-time to avoid manipulation by the local government. Both hourly and daily AQIs, as

11The Environmental Improvement Priority Cities were designated in 2007 during the “Eleventh-Five-Year”
period. The list has 77 cities including the four direct-administered municipalities, provincial capitals, cities
in the Beijing-Tianjin-Hebei Metropolitan Region, the Yangtze River Delta, the Pearl River Delta, as well as
other cities that are important regional economic centers and/or face significant environmental challenges.
The National Environmental Protection Exemplary Cities program was created during the “Ninth-Five-Year”
period; 68 cites were awarded the title from 1997 to 2007 based on a host of environmental quality criteria.
Appendix Figure D.1 tabulates cities by waves and their associated city clusters.

12Appendix Table D.1 tabulates economics attributes for cities in each wave. Cities in earlier-waves tend
to have a larger population, higher GDP per capita, higher levels of air pollution and industrial emissions,
etc. On the other hand, as shown in Appendix Table D.2, these economic and environmental conditions do
not change systematically after the program roll-out. Together, these evidence suggest that the choice of
cities included in each wave is based on permanent differences in city characteristics, rather than based on
city-level unobservables that correlate with the timing of the program roll-out.
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well as concentrations of PM2.5, PM10, O3, CO, NO2, and SO2, are available at individual
station- and city-levels, with an interactive map showing the location of each monitoring
station. Appendix Figure D.2 provides a screen-shot of the website interface. Importantly,
the government allows private parties to access and stream data directly from the web.
This functionality has spurred a surge in private websites and mobile phone applications
that report real-time air quality information. We provide more details on how the public
awareness on PM2.5 and smog has been affected by the program in section 4.

2.2 Data

This section documents the primary data sources for our empirical analysis.

Mass Media, Phone Apps, and Web Search We draw on several digital sources to
illustrate the evolution of public access to pollution information. First, we look at the
publication trends by People’s Daily, the government’s official newspaper, and pull articles
whose title or content contains the word “smog” from People’s Daily ’s digital archive. For
each article that mentions “smog”, we also identify a list of relevant cities.

Second, we scrape Apple’s App Store to obtain Chinese mobile apps that contain air
pollution information, using keywords including “air pollution”, “atmospheric pollution”, and
“smog”.13 These apps typically display current hourly pollution levels; some also provide
health related guidelines (e.g., avoid outdoor activities) when pollution levels are high. Ap-
pendix Figure D.3 is a screenshot from a typical pollution app. We also obtain apps in other
major categories such as gaming, reading, and shopping and use them as a control group.

Third, the most widely used search engine in China, Baidu, publishes a search index that
summarizes the number of queries for certain words in a city and day among both desktop
and mobile users since 2011. We focus on the search index for “smog”, the buzzword for air
pollution. The search index is generated using an algorithm similar to Google Trends that
is based on the underlying search traffic and reflects search intensity.

The prevalent usage of Internet and mobile phones among the Chinese population pro-
vides a unique opportunity to investigate pollution awareness using digital sources. Data
from the China Internet Network Information Center (CINIC) show that, by the end of
2012, China had about 0.56 billion (or about 40% of population) Internet users, more than
80% of whom were active search engine users.14 Mobile phone prevalence rose from 73.5 per

13The API returns the 200 most relevant apps for a given keyword.
14A CINIC 2013 survey of more than 2,800 Chinese phone respondents shows that more than 99% of

Internet users have heard of Baidu, the most popular search engine (seconded by Google, 87%), and 98%
have used it in the past six months (seconded by 360.cn, 43%).
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100 people in 2011 to 95.6 per 100 people in 2016 (National Bureau of Statistics), with a
smart-phone penetration rate of 72% in 2013 (Nielsen).

In addition to data on mass media coverage, mobile apps, and internet queries on air
pollution, we have compiled a rich set of data on air purifier sales, bank card transactions,
housing transactions, mortality rates, as well as the location of major polluters in Beijing
and satellite measures of air pollution concentration, which we describe below.

Air Purifier Sales Air purifier sales data come from a leading market research firm and
report the total units of air purifiers sold for both residential and institutional purposes at
the monthly frequency for fifty cities from 2012-2015.15 Among these fifty cities, thirty-four,
eleven, and five are in the first, second, and third waves of program roll-out, respectively.

Bank-Card Transactions Data Households’ shopping trips are constructed using the
universe of debit and credit card transactions during 2011-2015 from UnionPay, the only
inter-bank payment clearinghouse in China and the largest such network in the world. The
database covers 59% of China’s national consumption and 22% of its GDP in 2015 and
is the most comprehensive data with fine spatial and temporal resolution on consumption
activities for China (Appendix Figures D.4, D.5, D.6 provide summary statistics). For each
transaction, we observe the merchant name and location, transaction amount and time,
currency, etc.

Our key outcome variable is purchase rate, defined as the ratio between (1)the total
number of transactions occurred in a city×week, and (2) the total number of active cards
with positive transactions in a city×year. We focus on all transactions of a 1% random
sample of cards, with an average of 18.3 million active cards at any given point in time.

Two features of the data are worth mentioning. First, our data contains a small fraction
(about 3%) of transactions that are made online. We drop online transactions as it is difficult
to trace these buyers’ physical locations. Second, we do not observe items purchased in each
transaction. Fortunately, UnionPay classifies merchants into 300 plus categories, such as
department stores, supermarkets, etc. We use merchant category information in our analysis
below.

Housing Transactions Data (Beijing) Our housing data contains a total of over 660,000
new home transactions in about 1,300 apartment complexes in Beijing from January 2006 to
April 2014, with a near-universe coverage. Variables recorded include the transaction date
and price, housing unit characteristics (floor, size of the unit, etc.), as well as attributes

15The firm name is withheld per our data use agreement.
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and geo-location of the apartment complex. Beijing’s housing market is fluid. Over 84%
of transactions occur in complexes that are on the market for less than a year. Among the
1,300 apartment complexes, 64% are sold out in three years.

Polluter Data (Beijing) MEP conducts an annual survey of all major industrial polluters
and compiles the Chinese Environmental Statistics (CES) database, the most comprehensive
coverage of emissions in China and the source of the annual Environmental Yearbook (Liu,
Shadbegian and Zhang, 2017; Zhang, Chen and Guo, 2018). We have access to the 2007 CES,
which reports total industrial emissions across all pollutants for 587 polluters in Beijing. We
obtain firm address and operation status by linking CES with firm registration records from
Qixin (www.qixin.com) and geocode addresses using Baidu’s Map API. Our study focuses
on 407 polluters that operated throughout 2006-2014.

Mortality Data Chinese Center for Disease Control and Prevention (CDC) operates a
Disease Surveillance Points (DSP) system that covers 161 counties and city districts and 73
million individuals during 2011-2016, a 5% representative sample of China’s population.16

DSP’s mortality database, drawn from hospital records and surveys of the deceased’s house-
hold, is one of the highest-quality health databases that have been used in recent medical
and economic research (Zhou et al., 2016; Ebenstein et al., 2017). We observe the number
of persons and total deaths by each county × week × gender × age-group and separately
for the following six categories: chronic obstructive pulmonary diseases, heart diseases, cere-
brovascular diseases, respiratory infections, digestive diseases, and traffic accidents. The first
four groups are closely related to cardiovascular diseases, which are affected by air pollution
exposure, while the latter two causes serve as placebo-style outcomes. To use the same geo-
graphic unit of analysis throughout the paper, we aggregate the county mortality data to the
city level for a total of 131 cities. Among these 131 cities, 38 implemented the information
program in the first wave, 38 in the second wave, and 55 in the last wave.

Satellite Data To overcome the challenge that reliable pollution data are only available
after the information program, we obtain ambient air quality measures from Aerosol Optical
Depth (AOD) via NASA’s MODIS algorithm installed on satellite Terra’s platform. The
original data has a geographic resolution of 10 km × 10 km and a scanning frequency of 30
minutes, which we average to the city × day level from 2006-2015. MODIS records the degree
to which sunlight is scattered or absorbed in the entire atmospheric column corresponding
to the overpassed area under cloud-clear condition. As such, AOD captures concentration

16In China, counties are comparable to city districts and are smaller geo-units than cities.
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of particle pollution such as sulfates, nitrates, black carbons, and sea salts, and serve as
a proxy for outdoor particulate matter pollution (Van Donkelaar, Martin and Park, 2006).
Appendix Figure D.7 documents a strong correspondence between AOD and PM2.5 post the
information program.

We favor the MODIS AOD measure over alternatives (such as satellite-based ground-level
PM2.5 predictions) for several reasons. First, MODIS data can be easily aggregated from
daily to weekly or quarterly levels. This allows us to use the same pollution measure through-
out our analysis. In contrast, processed satellite-based PM2.5 data are only distributed at
certain temporal intervals (e.g., annual) and cannot be dis-aggregated in a straightforward
manner. Second, MODIS AOD allows us to observe overlapping 10 km × 10 km grid cells,
which is essential for the oversampling exercise in Section 5.3. Finally, while MODIS AOD
is a common input in predicted ground-level PM2.5, there is no consensus on the precise
relationship between AOD and PM2.5 in the atmospheric science literature.

3 Theoretical Model

Classical economic theory argues that the value of information stems from the fact that
information as an input to the decision process can help economic agents make better deci-
sions, for example by resolving market uncertainty in demand and supply conditions (Stigler,
1961, 1962) or technological uncertainty in investment and production decisions (Lave, 1963;
Hirshleifer, 1971). Pollution information affects the behavior of informed individuals who
could take measures to reduce the harm from pollution. In this section, we present a stylized
model to illustrate how the information program affects individual behavior and utility by
incorporating the elements of information economics (Hirshleifer, 1971; Hilton, 1981) into
the classical model of health demand and production (Grossman, 1972).

recognize the negative health impact of pollution

3.1 Model Setup

Individuals derive utility from the consumption of a numeraire good x, whose price is nor-
malized to one, and health stock h: U(x, h). Health stock depends on both the pollution
level c and the extent of avoidance a (individuals’ actions that mitigate the negative impact
of pollution): h = h(c, a).

Individuals face a budget constraint that is given by: I+w ∗ g(h) ≥ x+pa ∗a, where I is
non-labor income and w is the wage rate. Hours worked is denoted by g(h) and is a function of
the health stock. Individuals allocate their wage and non-wage income between consumption
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and engaging in the adaptation or avoidance behavior a, where pa is the associated price
(e.g., the cost of an air purifier or medication). We assume away dynamics and savings
in this model to ease exposition. In addition, we use a to include broadly-defined (costly)
adaptation behavior.17

Under imperfect information on pollution, consumers may or may not know the real
pollution level c. They maximize utility by choosing the optimal consumption x and defensive
investment a based on the perceived pollution level c0:

max
x,a

U(x, h)

s.t. I + w ∗ g(h) ≥ x+ pa ∗ a

h = h(c0, a)

The health function h = h(c0, a) in the optimization can be viewed as an ex-ante health
function which consumers relies on for decisions. It is different from the ex-post health
outcome h = h(c, a) experienced by consumers. This difference gives rise to the discrepancy
between the (ex-ante) decision utility and the (ex-post) experience utility as described in
(Bernheim and Rangel, 2009; Allcott, 2013).

Let avoidance under the perceived pollution c0 be denoted by a(c0). Individuals’ wage
income is determined by the actual pollution level c and avoidance a(c0): w ∗ g[h(c, a(c0))].
The consumption of the numeraire good is denoted by:

x(c, c0) = I + w ∗ g[h(c, a(c0))]− pa ∗ a(c0)

which makes it explicit that x depends on the actual pollution c and perceived pollution c0.18

Individuals’ (experience) utility based on the perceived pollution prior to the information
program is:

U [X(c, c0), h(c, a(c0))] ≡ V (c, c0)

where V (·, ·) denotes the indirect utility, where the first argument is the actual pollution c
and the second argument is the perceived pollution level. To examine the behavioral changes
and the welfare impacts of the information program, we make the following assumptions:

17Examples include reducing outdoor activities (Zivin and Neidell, 2009; Saberian, Heyes and Rivers,
2017), engaging in defensive spending (e.g., face masks and air purifiers) (Ito and Zhang, 2018; Zhang and
Mu, 2018), and location choices and migration (Chay and Greenstone, 2005; Banzhaf and Walsh, 2008;
Bayer, Keohane and Timmins, 2009; Chen, Oliva and Zhang, 2017).

18Individuals’ actual income is determined by the ex-post health stock: I+w∗g[h(c, a(c0))]. Consumption
of the numeraire good is a residual of the budget constraint, after subtracting the cost of avoidance.
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Assumption (A1) Health stock is bounded and decreases in pollution and increases in
avoidance: ∂h

∂c
≤ 0, and ∂h

∂a
≥ 0. In addition, the marginal health benefit of avoidance is

decreasing: ∂2h
∂a2
≤ 0. This assumption ensures that people don’t engage in infinite amount of

avoidance behavior. Finally, the worse the pollution, the larger the marginal health benefit
of avoidance: ∂2h

∂a∂c
≥ 0. The health benefit of avoidance is likely much higher when pollution

is severe than when it is modest. Similarly, we assume that hours worked increases in health,
but at a decreasing rate: dg

dh
≥ 0, d

2g
dh2
≤ 0.

We focus on interior solutions for the optimal level of avoidance behavior a. A necessary
condition for an interior solution is w ∗ dg

dh
∗ ∂h
∂a
|a=0> pa. At low levels of avoidance, the

marginal health benefit ∂h
∂a

is likely to be large. In addition, there are many choices of
different defensive mechanisms, some of which have low costs. For example, avoiding outdoor
activities at times of high PM2.5, wearing facial masks, or purchasing air purifiers are all cheap
and effective defensive mechanisms. When avoidance is cheap, individuals will engage in an
appropriate amount of avoidance to increase wage income (via improved health stocks), relax
the budget constraint, and enjoy a higher consumption of the numeraire good.

Assumption (A2) Utility is quasi-linear U(x, h) = x+ u(h) and increases in health at a
decreasing rate: ∂U

∂h
≥ 0, ∂

2U
∂h2
≤ 0. Quasi-linear utility functions are commonly used in the

literature and help to simplify the exposition.

Assumption (A3) Let c0 denote individuals’ perception of air pollution prior to the in-
formation program. We assume that c0 < c, that is, the perceived level of pollution is lower
than the actual level.19 In addition, pollution concentration c is perfectly observed post the
program.

Proposition 1. Under assumptions (A1)-(A3), the information program is predicted to
result in the following impacts:

1. Avoidance behavior increases: a(c) > a(c0)

2. Health improves and the (downward slopping) health-pollution response curve flattens:

h(c, a(c)) > h(c, a(c0)),
dh

dc
|c0=c ≥

dh

dc
|c0<c

3. Indirect utility increases: V (c, c) > V (c, c0)

19Another interpretation of Assumption 3 is that people underestimate the negative health impact of
pollution.
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Appendix A provides the proof. The theoretical model predicts that after the information
program, individuals engage in more pollution avoidance, which in turn reduces the health
damages from pollution and increases consumer welfare. Our empirical analysis provides
empirical tests on the first two predictions and uses the third prediction to quantify the
value of the information program.

3.2 Value of information

To derive the value of information (VOI), recall that:

V (c, c) = U [x, h(c, a(c))] + λ{I + w ∗ g [h(c, a(c))]− x− pa(a(c))}

where V (c, c) denotes the indirect utility when individuals correctly perceive pollution, and
avoidance is chosen optimally according to the following condition:20

[Uh(c, a) + λ ∗ w ∗ gh(h(c, a))]
∂h(c, a)

∂a
− λpa = 0 (1)

The indirect utility before the information program is:

V (c, c0) = U [x, h(c, a(c0))] + λ{I + w ∗ g [h(c, a(c0))]− x− pa(a(c0))}

The key difference between V (c, c) and V (c, c0) is in the choice of avoidance: a(c) is deter-
mined by equation (1) rather than equation (A.1). To derive the value of information, we
apply the Tailor’s expansion to the indirect utility function V (c, c) at the second argument
c = c0: V (c, c) = V (c, c0) +

∂V
∂c0

(c− c0) +Op(c− c0). The value of information is therefore:

V OI = V (c, c)− V (c, c0)

= {Uh ∗
∂h

∂a
∗ ∂a
∂c0

+ λ ∗ w ∗ gh ∗
∂h

∂a
∗ ∂a
∂c0
− λ ∗ pa ∗

∂a

∂c0
}(c− c0) +Op(c− c0)

where Op(c− c0) denotes higher order terms of (c− c0). There are three terms in the curly
bracket. The first refers changes in utility due to health improvement from the avoidance
behavior. The second denotes changes in wage income. The third includes changes in the
avoidance cost. The benefit of the program, or the value of information, is bounded below
by the first and third terms, which we measure in our empirical analysis.

20x drops out from the indirect utility function since U(x, h) is quasi-linear.
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4 The Sea Change in Information Access and Awareness

4.1 Information Access: News and Mobile Apps

The government’s official newspaper, People’s Daily, and mobile phone apps are among the
primary venues for the general public to access pollution information. In Figure 3a, we count
the number of days in each month when People’s Daily mentions “smog” in any articles.
“Smog” is rarely mentioned before 2013. Almost immediately following the information
program’s initial roll-out, the frequency of “smog” appearing in People’s Daily jumped to
roughly 15 days per month.

One might be concerned that the sharp increase in “smog” mentions post 2013 is con-
founded by changes in the general environment (shifts in government policies etc.) instead
of driven by the information program, which is gradually rolled out across cities. To exam-
ine this, we scan each smog article in People’s Daily to determine the list of cities that are
mentioned. This allows us to construct a time series measure of “smog” for each city. Figure
3b plots standardized “smog” (mean 0, standard deviation 1) as a function of time since the
roll-out of the information program, spanning a year before and a year after. We estimate
an event study controlling for month-of-year dummies (12 indicators) and year dummies (5
indicators). In other words, we test for a discontinuous change in “smog” mentions after a
city begins to monitor pollution, conditional on general within-year seasonality as well as
year-by-year changes in pollution.

The graphical pattern features a discrete increase exactly on the roll-out date (event
month t=0). By one year after the roll-out, “smog” mentions in cities with the monitoring
stations have increased by 50% of a standard deviation. In other words, there is a substantial
increase in the chance that People’s Daily mentions smog in a city after the city begins to
monitor pollution. Assuming unobserved changes in the overall environment do not correlate
exactly with the timing of the monitoring roll-out, the difference between pre (t < 0) vs. post
(t ≥ 0) coefficients identifies the causal impact of the information program. We have repeated
this analysis using other keywords including “air pollution” and “atmospheric pollution”, with
very similar results.

We then examine the availability of pollution-related mobile phone apps. Unlike news-
papers which provide pollution information at a daily frequency, information from apps are
more readily accessible in real time. Given the high mobile phone penetration in China, pol-
lution apps serve as a significant venue through which the public learn about their pollution
exposure at the moment. We compare the distribution of release time for pollution apps
with apps from other popular categories including gaming, music, video, reading, finance,
sports, education, shopping, and navigation, which capture the majority of commonly-used
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apps.
Figure 4 presents the distribution of release time for pollution apps against apps in the

control group. There is a clear surge in the density of pollution apps released after the
information program, relative to non-pollution apps. The largest increase in the probability
of releasing a pollution app occurs one quarter after the initial monitoring roll-out. In total,
about 82% of pollution apps are released post January 2013, vs. 62% for non-pollution apps.
Implicitly, this means that the availability of pollution apps have grown nearly 500% post
2013, which is four times faster than then growth of other apps.21

4.2 Awareness: Web Searches and Air Purifier Sales

We examine changes in the public awareness of air pollution issues in two ways. First, we
measure the demand for pollution-related information by internet searches on Baidu that are
related to “smog”. This analysis is analogous to the examination on “smog” news in section
4.1. Figure 5a plots the time-series pattern of the search index at the national level. As in
section 4.1, the smog search index increased sharply starting January 2013, the month of
the initial roll-out. Post-2013 searches exhibit a strong secular pattern where the index is
highest in winter seasons, as smog is more severe in winter partly due to coal-fueled heating.

Leveraging the search index at the city × daily level for over 300 cities, figure 5b plots
the mean of the standardized search indexes in the year before and the year after the roll-
out at a local city. Echoing results in section 4.1, the index is flat and near zero prior
to the information program and rises rapidly when monitoring starts. By one year after
the information program, smog searches have increased by 75% of a standard deviation.
Examining other pollution-related search phrases such as “mask” and “air purifier” deliver
very similar results.

Second, we examine changes in public and private investment in defensive equipment.
We repeat the exact same analysis using data on monthly air purifier sales for fifty cities.
Air purifier sales more than double, rising from 11,000 units sold per month in 2012 to over
25,000 units per month after 2013 (Figure 6a). Similar to web searches, air purifier sales also
exhibit a strong seasonality with more sales in winter. Finally, the increase in sales coincides
with the timing of the roll-out at a city (Figure 6b). For a typical city in our sample, air
purifier sales increase by over 100% after monitoring begins.

21There was a mass of pollution apps released before 2013. These apps typically stream weather informa-
tion and later incorporated real-time air quality contents post 2013. These apps are therefore categorized as
pollution apps by the time we queried for the Appstore data.
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4.3 Changes in Social and Economic Conditions

As we elaborate in Section 5.1, our research designs rely on the assumption that there are no
confounding factors that systematically coincide with the timing of the information roll-out.
China is experiencing rapid social and economic changes during the sample period. While
our statistical analysis could control for general as well as city-specific time trends using
fixed effects, one might be concerned about differential trends that correlate systematically
with the timing of the roll-out.

Appendix Table D.2 presents a series of tests on differential shifts in city-level observables
before and after the program. We focus on four classes of social and economic conditions:
pollution levels (using satellite-based AOD), political and regulatory environment (the num-
ber of downfall local officials during the anti-corruption campaign, demographics of local
political leaders, news mentions of regulation policies), and healthcare access (the number
of medical facilities). Overall, we find no evidence that the general social and economic
conditions or the air quality correlates with the information roll-out.

5 Pollution Disclosure, Behavior, and Health

5.1 Empirical Framework

As shown above, the information program has substantially expanded public access to pol-
lution information and dramatically increased households’ awareness about pollution issues.
In turn, these changes have triggered a cascade of short-run and long-run behavioral changes
in household activities and health outcomes, including avoidance behavior, housing choice
and prices, and mortality. We use the following empirical framework to examine the change
in the relationship between pollution exposure and the outcomes (i.e. the “slope”) before
versus after the program:

Outcomect = α× Pollutionct + β × Pollutionct × dct + x′ctγ + εct, (2)

where c denotes a city and t denotes time (e.g., day or week). Pollutionct is the AOD
measure of the ambient air quality. Dummy dct represents the information treatment and
takes the value one for all periods after city t implements the information program based
on the staggered roll-out schedule. Vector xct includes weather conditions and rich spatial
and temporal fixed effects such as city fixed effects and time fixed effects. The last term εct

denotes remaining unexplained shocks.
All analyses below include full interactions between Pollutionct and the treatment dummy
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dct. Hence α represents the outcome-pollution gradient before the information program, and
β represents changes in the gradient after the program, as denoted by β in the empirical
framework.

Equation (2) highlights the difference between our study and the previous literature
that estimates the causal effect of air pollution exposure. Conventionally, the key threat
to identification arises because pollution exposure is likely to be correlated with the error
term: E (Pollutionct × εct) 6= 0. Such endogeneity could be due to omitted variables or
errors in the measurement of pollution exposure.22Addressing endogeneity in air pollution is
challenging and has been the subject of recent research on understanding the morbidity and
mortality cost of air pollution (e.g., Bayer, Keohane and Timmins, 2009; Chen et al., 2013;
Arceo, Hanna and Oliva, 2015; Deschenes, Greenstone and Shapiro, 2017; Ito and Zhang,
2018; Barwick et al., 2018). In contrast, the scope of our empirical analysis differs in two
ways. First, in most cases we are not interested in the causal effect of pollution per se
(which is α), but rather in the change in the causal effect before versus after the information
program (which is β). Second, in our analysis, Pollutionct is intended to be a direct measure
of ambient pollution, rather than population exposure which is determined by the ambient
air quality, avoidance behavior, and population distribution. In fact, in the analysis below
we directly examine how avoidance and residential sorting respond to ambient air pollution
with versus without readily available pollution information.

The key insight of our empirical framework is that, under reasonable assumptions, one
can consistently estimate the change in pollution’s causal effects (β) using OLS, without
having to consistently estimate the level of the effect (α). Intuitively, β measures the change
in the slope of the pollution-outcome relationship before and after the treatment. If we were
to separately estimate the slope using data before and after the treatment, the endogeneity
in pollution would lead to inconsistency in both estimates. However, if the nature of the
endogeneity is not affected by the treatment, the inconsistency in the slope estimates would
cancel out, leaving the OLS estimate of β to be consistent. The following two assumptions
formalize this intuition:

Assumption (B1): E (εct|dct, xct) = 0. This assumption implies that conditioning on city
attributes and other controls xct such as city and week fixed effects and weather conditions,
the treatment dct is exogenous. As discussed in section 2.1, the information program was
implemented against the backdrop of MEP’s promulgation of the national PM2.5 standard,
which marked a sudden and drastic change in the government’s stance regarding the im-

22For example, satellite-based AOD captures particulate concentration in the entire air column above a
ground spot, which might differ from ground-level exposure. In addition, ambient pollution might differ from
actual exposure due to the outdoor-indoor difference in the pollution level.
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portance of environmental quality. The roll-out schedule of the monitoring stations in three
waves was largely based on the pre-determined city designations (e.g., provincial capitals or
the list of environmental improvement priority cities designated in 2007), as shown in Figure
2 and Appendix Figure D.1.

One might be concerned about confounding factors that are correlated with these pre-
determined city designations. For example, the enforcement of the national PM2.5 standards
established in 2012 might be systematically correlated with the roll-out schedule. To examine
whether this assumption of conditional exogeneity is reasonable, we first compare a host of
city attributes before and after the program, including variables that reflect the political
and regulatory environment (the number of People’s Daily news articles that report smog
in a city for a given week, the number of anti-corruption cases, the age of the city mayor,
whether the city mayor has a Ph.D. degree), healthcare access (the number of hospitals per
1,000 people), and most importantly, the pollution levels (both the weekly average and the
maximum pollution reading in a city and week). If changes in the (implementation of the)
environmental regulations are systematically correlated with the program roll-out, then we
should expect pollution levels as well as proxies for the regulatory environment to change
before and after the program. Results for the seven measures discussed above across four
different specifications with an increasingly demanding set of controls indicate no discernible
differences in any of these twenty-eight regressions (Appendix Table D.2), suggesting that
the role of unobserved confounding factors is likely limited (Altonji, Elder, and Taber 2008,
Emily and Andrews 2019).

In Section 5.2 below, we conduct two additional robustness analyses using a triple differ-
ence framework and randomized assignment. Our results are robust to confounders that are
correlated to our treatment either spacially or over time.

Assumption (B2): Pollutionct = x′ctθ + νct, where E (vct|xct) = 0 and E (εct × νct) =

σεν . This assumption implies that the endogeneity of Pollutionct, which arises from the
correlation of νct and εct, is not affected by the information program. This assumption is
analogous to the “parallel trend” assumption in the Difference-in-Difference framework. In
the analyses below, we plot the event study of the α coefficients, which are flat and stable
in all estimations we have conducted. This contrasts sharply with a sizeable break at the
time of the information treatment that is both economically and statistically significant and
stable post the treatment. These patterns suggest that the outcome-pollution relationship
is stable except for the information program. In other words, our assumption of a ‘stable
correlation’ between the endogenous variable (Pollution) and the residuals is tenable in our
setting.
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Proposition 2. Under Assumptions (B1) and (B2), the OLS estimate of β in equation (2)
is consistent.

The proof is provided in Appendix C. There are two sources of inconsistency in the
OLS estimate of β: one from the endogeneity of the interaction term Pollutionct × dct, and
the other from smearing due to the endogeneity of Pollutionct. Under Assumptions (B1)
and (B2), the inconsistency from these two sources cancels out. Based on Proposition 2, our
subsequent analysis focuses on the OLS estimate of β. In Section 5.4 where we are interested
in the baseline impact of pollution on mortality (α), we use both the regression discontinuity
design and the IV strategy from the literature to address the endogeneity of Pollutionct.

5.2 Pollution Disclosure and Avoidance

With access to reliable pollution information, households can take different measures to avoid
or mitigate pollution exposure. Some low-cost and effective solutions include staying indoors,
wearing facial masks, or using air purifiers when pollution is elevated. We first examine how
the relationship between outdoor purchase trips and ambient pollution levels changes after
the information program is implemented in a city via an event study:

PurchaseRatect =
15∑

k=−24

βk × ln Pollutionct × 1(t = k) +
15∑

k=−24

ηk × 1(t = k) + x′ctγ + εct (3)

where c denotes city and t denotes week. The outcome variable “PurchaseRatect” is the
number of card transactions in city c at week t per 10,000 active cards in the city in the
corresponding year (Section 2.2). The pollution measure “ln Pollutionct” is logged average
AOD. The key parameters of interest are the β’s, which represent changes in purchase rate
for one percent increase in AOD. To examine changes in the purchase-pollution relationship
before versus after the program, we allow β’s to vary over time relative to the roll-out
month. Cities in different waves have different numbers of available pre and post periods.
We examine an event window that spans 39 months (24 months before and 15 months after
the program) and dummy out the remaining sample periods. This guarantees that there are
nearly identical city × week observations underlying each event month.

We identify β’s using week-to-week variations in air pollution net of a flexible set of geo-
graphic and time controls (xct) that include prefectiry-city FEs, week-of-year FEs, and year
FEs. Standard errors are clustered at the city level to allow for arbitrary serial-correlations
among the sample periods (weekly observations over five years). In order for the β’s es-
timates to be representative of the population impact, we weight the regression using the
number of active cards in a city and year as cities differ greatly in size.

21



Figure 7 summarizes the estimates of βk coefficients. We restrict βk to vary at the
quarterly (3-month) level to average out noises in time trends. Two patterns emerge. First,
before the program, the βk estimates are flat and statistically indistinguishable from zero,
suggesting a lack of behavioral responses to pollution when individuals have limited access
to information. Second, βk estimates exhibit a level-shift and become strongly negative after
the program.

To examine the robustness of these patterns, we repeat the analysis across a range of
specification choices (Table 1), modifying equation (3) in two ways. First, instead of the
event dummies, we include the full interactions between the pollution term and the post-
treatment dummy as in equation (2). Second, we increasingly tighten the fixed effects to
exploit finer variation in the data. Column 1 uses city, week-of-year, and year fixed effects,
which corresponds to the specification of Figure 7. Column 2 uses city and week-of-sample
fixed effects (fixed effects for all weeks in 2011-2015), exploiting variation in pollution across
cities in the same week-in-time. Column 3 further adds region × year fixed effects, allowing
for common trends in transactions and pollution that are specific to each region.23 Column
4 is our most stringent specification, controlling for city and region × week-of-sample fixed
effects. We obtain similar estimation results across the board.

Consistent with the evidence in Figure 7, outdoor consumption trips are invariant to
pollution before the information program, suggesting that households are unlikely to be
engaging in any mitigating measures when pollution is elevated. In contrast, after a city im-
plements the pollution monitoring and disclosure program, purchase trips become responsive
to pollution levels: a doubling of the pollution level reduces purchase trips by 3 percentage
points, according to our preferred specification in Column 4. This is not a trivial change
given that the average week-to-week variation in AOD is 76% during our sample period. In
addition, our analysis is at the weekly level, which by construction has already incorporated
within-week inter-temporal substitution. The estimate reflects to a large extent permanently
displaced outdoor trips as households seek to mitigate pollution exposure.

As a point of reference, Cutter and Neidell (2009) find that when ‘Spare the Air’ alert
is issued in San Francisco Bay Area, daily traffic is reduced by 2.5-3.5% with the largest
effect during and just after the morning commuting period.24 Graff Zivin and Neidell (2009)
estimate that 1-day smog alerts issued in Southern California lead to a 8-15% reduction in
attendance at two major outdoor facilities (the Los Angeles Zoo and the Griffith Park Obser-

23“Region” is a conventional partition of cities by location: North (36 cities), Northeast (38 cities), East
(105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities).

24The ‘Spare the Air’ (STA) advisories, designed to elicit voluntary reductions in vehicle usage and en-
courage the usage of public transit and ride-sharing, are issued on days when ground-level ozone is predicted
to exceed National Ambient Air Quality Standards.
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vatory). These two studies focus on immediate (daily) behavioral changes after government-
issued air quality warnings while our elasticity estimates are with respect to marginal changes
of air quality over the course of a week post the information program.

In Appendix D, we report three sets of additional analyses that support our main find-
ings. First, we examine heterogeneity by the “deferrable” vs. “scheduled” nature of the
consumption. Deferrable categories include supermarkets, dining, and entertainment. These
shopping trips are more likely subject to pollution avoidance. These categories experience a
5 to 7 percentage point increase in purchase-pollution elasticity with the most stringent set
of controls and explain over 75% of the change in overall purchase-pollution gradient. On
the other hand, we conduct placebo-style tests looking at the impact of information roll-out
on “scheduled” consumption including billings (bills in utilities, insurance, telecommunica-
tion, and cable services), government services (court costs, fines, taxes), business-to-business
wholesales, as well as cancer treatment centers. There is no statistical evidence that infor-
mation availability changes “scheduled” consumption’s responses to air pollution.

Second, we test the robustness of our results across a range of specification choices. To
highlight a few examples, we find that the inclusion of flexible weather controls are not
consequential to our estimation, that online transactions cannot explain away our findings,
and that our conclusion holds for cities without U.S. Embassy or Consulates Offices (these
Offices have independent PM2.5 monitoring and so residents in the cities might have better
information on air quality). Our findings are also robust to a more saturated research design
where, for each wave of “treatment” cities, we introduce a group of “control” cities that
neighbor the treatment cities, but have not yet experienced monitoring. We then estimate
differential change in the transaction-pollution slope across the treatment vs. control cities.
The logic of this test is similar to a triple difference design comparing purchase behavior
before vs. after the information program, in treatment vs. control cities, on high vs. low
pollution days.

Finally, we perform randomized inference to address the concern that we have a small
number (three) of roll-out waves which is less than ideal for a staggered event study design.
Appendix Figure D.8a compares our true t-test statistic with an “empirical null distribution”
of test statistics obtained through 500 repetitions of random assignment of cities into moni-
toring roll-out waves.25Tested against the empirical null (rather than the theoretical null of
a t distribution), our effect estimate is statistically significant at the 5% level.

25Conceptually, we take the list in Appendix Figure D.1 and shuffle cities across waves. We do this for
500 times, and each shuffle yields a coefficient estimate. Notice that, because we have three roll-out waves,
each city has a nearly 1/3 chance of “landing” in its true wave. Our distribution of placebo estimates are
therefore expected to center around a negative number.
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5.3 Pollution Disclosure and Housing Choices

We now turn to assess housing market responses to pollution disclosure using the near-
universe transactions of new homes sold in Beijing from January 2006 to April 2014. We
observe the following features for every unit sold: transaction price, transaction date, apart-
ment complex name, address, and attributes, floor level, and unit size.26 Analogous to the
previous analysis in section 5.2, we study the housing price-pollution relationship across
neighborhoods with vary degrees of air pollution and examine the degree to which this re-
lationship shifts before and after the information program was implemented in Beijing in
January 2013. Because we only have 16 months of transactions post the treatment, we skip
the event study and simply estimate the change in the price-pollution gradient.

Housing purchase decisions are likely to be affected by the long-run pollution level rather
than day-to-day variations. As a result, we focus on year-to-year changes in housing prices.
To do so, we first take all housing transactions and estimate the following equation:

ln TransactionPriceict = w′ictγ + ηcy + εict, (4)

where ln TransactionPriceict is the log transaction price of unit i in apartment-complex c on
date t. The vector of unit characteristics wict includes floor fixed effects, sale month-of-year
fixed effects, unit size and its quadratic term. Our variable of interest is ηcy, which are
apartment-complex × year level averages of housing prices after controlling for observable
attributes. There are on average 153 underlying housing transactions for each apartment-
complex and year.

Once we obtain the estimated quality-adjusted housing price index at the apartment-
complex ×year level, η̂cy, we examine the relationship between housing price and pollution
using a framework similar to equation (2). We use two different measures of pollution at the
sub-city level: fine-scale ambient air quality (AOD) at 1km-by-1km × year resolution, and
distance to major polluters as a proxy for local pollution.

The regression equation is:

η̂cy = α · ln Pollutioncy + β · ln Pollutioncy × 1(after monitoring) + x′cyγ + εcy (5)

where ln Pollutioncy is one of the two pollution measures. β captures the change in pollution-
26There are three types of geographical units in this analysis: district, community (or “jiedao”), and an

apartment complex. The municipality of the Metropolitan Beijing area is divided into sixteen districts,
which is further divided into 180 communities and 1,200 apartment complexes. A community is comparable
to a zip-code in the U.S. in terms of geographical coverage while an apartment complex is similar to a census
tract.
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housing gradient before and after the program. We discuss each of the these two sets of
analysis below.

Fine-scale AOD and Housing Prices. To obtain a pollution measure with a high
level of spatial resolution, we employ a frontier method in atmospheric science called “over-
sampling” that re-processes the original AOD data to increase its spatial resolution from
10-by-10 km to 1-by-1 km, while sacrificing the temporal resolution from daily to annual.
Oversampling takes advantage of the fact that MODIS scans a slightly different, but over-
lapping, set of pixels at a given location on each of the satellite’s overpass. When the
researcher is not interested in the high temporal dimension (as in our case where we only
need the annual pollution), it is possible to average across the overlapping overpasses to
enhance the geo-spatial resolution of the AOD measure.27 Figure 8 presents the pre- and
post-oversampling average AOD concentration for the city of Beijing. Our first pollution
measure in the housing analysis is therefore the oversampled AOD level in year y in the
1-by-1km region that contains the apartment-complex c.28

We use two sources of variation in our regression analysis. The first source of variation
comes from the fact that we often observe transactions in the same apartment-complex
for a streak of years before all units are sold out. We can therefore use a standard panel
fixed effects regression strategy to compare transaction prices within the same complex, but
across different years with high versus low pollution levels. In this specification, we include
apartment-complex fixed effects, year fixed effects, and “year-on-market” fixed effects (9
indicators, each indicates if year y is the apartment-complex’s rth year on market).

The second source of variation comes from our ability to observe fine-grained, cross-
sectional variations in air pollution even within small geographic area. We observe about
1,200 apartment-complexes scattered in 180 communities across 16 districts in Beijing. We
compare transaction prices within the same district × year, but across apartment-complexes
in areas with high versus low pollution levels, controlling for time-invariant differences in
community-level characteristics. Hence in the second type of specification, we include district
× year fixed effects, community fixed effects, and year-on-market fixed effects.

The two specifications exploit rather different sources of pollution variation, with the
former focusing more on year-to-year variation within the same location, the latter focusing
more on cross-sectional variation at a given point in time. To flexibly account for potential
autocorrelation in both housing price and pollution across time and over space, we two-way
cluster standard errors at the community level and the district × year level. We report results
for equation 5 in Table 2. Column 1 shows that prior to the information program, a doubling

27Appendix Figure D.9 illustrates the oversampling idea using two consecutive days of MODIS AOD data.
28Air purifiers have become common household appliance since 2013 and provide real-time PM2.5 readings.
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of annual pollution corresponds to an insignificant 9% increase in housing prices. After the
program, the price elasticity becomes negative and the change in elasticity is 59 percentage
points and significant at the 10% confidence level. The results suggest that housing prices
do not respond to variation in pollution levels before the program, while after the program,
air quality is capitalized in housing prices.

In column 2, we examine the effect of lagged pollution in addition to current year’s
pollution exposure. We obtain similar results: a marginally significant 73 percentage-point
change in elasticity on current pollution, but a noisy effect from lagged pollution. Columns
3 and 4 correspond to our cross-sectional specification estimates. These specification yields
a similar reduction-in-elasticity estimates of 85 percentage points.

Our estimates of housing price-pollution elasticity for the post-monitoring period there-
fore ranges from -0.6 to -0.8. This is somewhat larger than those obtained in the U.S.
setting. For example, Chay and Greenstone (2005) exploits permanent reduction in Total
Suspended Particle pollution (TSP) due to the 1970s U.S. Clean Air Act. They estimate
a price-pollution elasticity of -0.25. Taking into account moving costs and variation in air
quality across U.S. metro areas, Bayer, Keohane and Timmins (2009) show a price-pollution
elasticity of roughly -0.34 to -0.42. Our estimates are similar to those obtained in China set-
tings. In a hedonic regression exercise using Beijing’s housing transactions and land parcel
data, Zheng and Kahn (2008) find a price-PM elasticity of -0.41. In a recent residential-
sorting exercise, Freeman et al. (2019) use moving costs and housing value information from
China Population Census micro-level data to estimate a price-PM2.5 elasticity of -0.71 to
-1.10.

Proximity to Major Polluters and Housing Prices. Our second pollution measure
is distance to the nearest major pollution source, following the literature (e.g., Davis, 2011;
Currie et al., 2015; Muehlenbachs, Spiller and Timmins, 2015). We examine how the distance
gradient shifts before versus after the information program. Large polluters tend to be visible
and well known landmarks in a city. The information program could raise the salience of
the potential health impacts of these large polluters in residents’ housing choice decisions.

As described in section 2.2, our distance-gradient analysis begins with 41 top 10% pol-
luters in Beijing that were in operation from 2007 – 2018 and account for nearly 90% of
total emissions in 2007 (Appendix Figure D.10). Using geo-locations of all four hundred plus
major polluters, we construct a time-invariant “distance to top-decile polluter” variable as
our second pollution measure while controling for distance to non-top polluters. We control
for district by year fixed effects, community fixed effects, and year-on-market fixed effects.
We drop apartment-complex fixed effects which are perfectly colinear with the time-invariant
distance to the nearest major pollutor.
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Figure 9 presents the results. Figure 9a shows the estimated distance gradients separately
for before and after the information program. We detect no statistically significant distance
gradient curve before the program. The shape of the curve shifted substantially after the
program, where a near-monotonic price-distance relationship emerges. Figure 9b plots the
difference in the distance gradient. Houses within 3 km of the top polluters experienced the
largest depreciation of about 27%. The effect fades with distance and becomes insignificant
over 6 km. The magnitude is large but not implausible given the unprecedented housing
boom in the city: the average housing price in Beijing grew by 262% during our sample
period and the effect size corresponds to 42% of the inter-quartile range of the housing price
dispersion.

5.4 Pollution Disclosure and Health Benefit

Our previous analyses have documented a range of behavioral responses to the information
program. To quantify the value of pollution information, our endpoint analysis is to exam-
ine whether the same amount of pollution exposure is associated with fewer deaths after
information becomes widely available using county-level mortality data from 2011 to 2016.
Similar to Section 5.2, we conduct an event study and regress logged mortality rate in county
c × quarter t on the corresponding logged pollution level, allowing the coefficient to vary by
event quarter k, i.e., the kth quarter since pollution monitoring:

ln Mortalityct =
6∑

k=−10

βk × ln Pollutionct × 1(t = k) +
6∑

k=−10

ηk × 1(t = k) + x′ctγ + εct (6)

We made several specification choices based on the nature of our data. First, we aggregate
weekly mortality rate to quarterly to average out noises. However, the qualitative findings
are the same whether we conduct our analysis at weekly, monthly, or quarterly level, with the
βk estimates being slightly smaller using the weekly and monthly data. Second, we allow the
βk coefficients to vary from 10 quarters before to 6 quarters after the information program
to ensure a roughly balanced number of underlying counties for each event quarter. We have
also included a separate dummy variable that groups the remaining quarters.

Figure 10 plots the βk coefficient estimates. The mortality-pollution elasticity exhibits a
roughly flat trend before the program, followed by a noticeable decline after the program.
In the event study, we control for city, quarter-of-year, and year fixed effects. We repeat the
analysis as in Table 3 and replace the event dummies with full interactions between the pol-
lution term and the post-treatment dummy. We experiment with increasingly stringent fixed
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effects controls by including quarter-of-sample and region × quarter-of-sample fixed effects
dummies (Tables 1). The coefficient estimate on the interaction term between pollution and
the program dummy suggests a statistically significant 5 percentage point reduction in the
mortality-pollution elasticity after the program. The results are similar across specifications
and consistent with the graphical evidence from Figure 10.

Our heterogeneity analysis provides suggestive evidence of underlying mechanism behind
the mortality effect. Specifically, we split the sample into above vs. below average values of
a series of city-level characteristics, including per capita income, shares of urban population,
per capita number of hospitals, per capita residential electricity use, and shares of mobile
phone users. Table 4 reports the results where we focus on the interaction between the
change-in-gradient “Log(Pollution) × 1(after monitoring)” coefficient and city-level charac-
teristics. Column 1 shows there is no heterogeneity by city’s average per capita income.
Interesting patterns emerge when we examine more specific dimensions of heterogeneity.
Columns 2 through 5 suggest large reduction (about -8 percentage points) in mortality dam-
age in cities that are more urban, having more hospitals, having higher rate of residential
electricity use, and with higher mobile phone penetration. These findings are broadly con-
sistent with the fact that residents in these cities are more likely to benefit from pollution
information and engage in defensive activity that counteracts health damages of air pollution
exposure.

In Appendix D, we conduct a series of additional tests to examine the plausibility of the
reduction in the mortality-pollution elasticity estimates. First, Appendix Figure D.11a ex-
amines age-specific mortality rates. The effect is most precisely estimated among people aged
over 40 who are more vulnerable to pollution exposure than younger age groups. Appendix
Figure D.11b illustrates that changes in the mortality-pollution relationship concentrate in
cardio-respiratory causes, such as COPD, heart diseases, and cerebrovascular diseases, which
are widely considered as the most relevant consequences of pollution exposure. The impact
on mortality-pollution relationship from respiratory infection and digestive diseases is both
small and insignificant. For traffic fatalities, the relationship post disclosure appears to be-
come flatter though the change is not statistically significant.29 Third, we have explored
non-linear specification and found that the reduction in the mortality-pollution gradient is
insignificantly convex in the level of pollution shock (Appendix Figure D.12). Finally, we
repeat the same randomized inference exercise as discussed in section 5.2 and compare the
true effect size to a distribution of placebo effect size obtained from 500 repetitions of ran-
dom city roll-out assignment. Appendix Figure D.8b shows our effect estimate is significant

29Air pollution could affect visibility as well as cognitive function (Zhang, Chen and Zhang, 2018), both
of which could result in increased risk from traffic accidents.
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at the 5% level.

6 The Value of Pollution Information

The value of information (VOI) arises from the power of information in changing decisions.
Our analyses illustrate that disclosing pollution information has affected a range of behav-
ioral and market outcomes that reflect households’ effort to mitigate the negative health
consequences of air pollution. We measure VOI as the fraction of pollution-caused deaths
that are avoided by providing information access, holding pollution exposure constant:

VOI =
ε1 − ε0
ε0

(7)

where the ratio is between the change in the mortality-pollution elasticity due to the program
(ε1 − ε0) and the level of the mortality-pollution elasticity prior to the program (ε0). The
numerator corresponds to β in equation (2) and is the interaction coefficient reported in
Table 3. The denominator corresponds to α in equation (2) and is the coefficient estimate on
“Ln(Pollution)” in Table 3. The counter-intuitive magnitude is similar to the OLS estimates
in the literature using the correlation between PM exposure and mortality in China (e.g.,
Yin et al., 2017; Ebenstein et al., 2017). Studies based on quasi-experimental methods have
yielded much larger effect sizes in the right direction (e.g., Chen et al., 2013; He, Fan and
Zhou, 2016; Ebenstein et al., 2017).

To get at the true level of ε0, we use the main finding of a recent paper by Ebenstein et al.
(2017) that examines the long-term mortality effects of PM exposure. We favor this study
because it is based on well-established quasi-experimental method, uses a similar data source
for mortality measurement, and is based on 2004-2012 before the information program was
implemented. Using a regression discontinuity (RD) design that leverages a free coal-based
heating policy available only to cities to the north of the Huai River, the authors find a
mortality-PM10 elasticity of 0.70. Assuming a linear dosage-response function, our estimate
of a 5 percentage point reduction in the mortality-pollution elasticity therefore indicates a
roughly 7% reduction in deaths attributable to the information program for the same amount
of pollution exposure.

With a slightly different sample period, we replicate the RD analysis in Ebenstein et al.
(2017) and obtain very similar baseline mortality estimates as shown in Appendix Figure
D.13 and Appendix Table D.7. The authors also report an OLS regression between logged
cardio-respiratory mortality and logged PM10 exposure and yields an correlational elasticity
estimate of 0.02, which is similar to our OLS estimate. In unreported analysis, we use
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the instrumental variable approach introduced in Barwick et al. (2018) that exploits long-
range transport of pollution from upwind cities and obtain similar estimates on the baseline
mortality impact.

To conceptualize the effect size, we note that under the assumption of linear mortality-
pollution dose response function, the benefit of a 7% reduction in mortality-pollution elastic-
ity is roughly the same with the benefit of a 7% reduction in pollution concentration. This
corresponds to roughly 10 ug/m3 reduction in PM10 or 5 ug/m3 reduction in PM2.5 in China.
We perceive the effect size as plausible for several reasons. First, the effect size is moderate
compared to the average cross-city variation in PM2.5 after the program (SD = 20.4 ug/m3,
IQR = 25.2 ug/m3). Second, several recent government programs have been shown to shift
pollution levels significantly. For example, the winter heating policy implemented to the
north of the Huai River is shown to increase PM10 by about 41.7 ug/m3 (Ebenstein et al.,
2017). Large-scale inspection and cleanup efforts across China since 2013 are associated with
over 50 ug/m3 reduction in PM2.5 for some northern cities (Greenstone and Schwarz, 2018).

The information program brings sizeable economic and health benefits to the society.
Using Ito and Zhang (2018)’s WTP estimate based on air purifier purchases in China, a 10
ug/m3 reduction in PM10 is about RMB 90 ($13.4) per year, which aggregates to RMB 122
billion per year nationwide. In Barwick et al. (2018) , an individual saves RMB 38 ($5.7) in
out-of-pocket health spending from a 5 ug/m3 reduction in PM2.5 exposure, aggregating to
RMB 52 billion per year nationwide.

We then compare the benefits to financial costs associated with increased defensive and
avoidance actions after the program. First, we observe that total sales of air purifiers (PM2.5

masks) increased at a rate of RMB 7 (0.55) billion per year post 2013. Because many cities
started the information program after 2013, we consider these numbers to be upper bounds
on the costs of increased defensive investments due to the information program. Second, we
consider forgone consumption due to pollution avoidance. From our bank-card analysis in
section 5.2, we expect 1.34 million fewer transactions per year post the information program.
The average transaction in our data carries a value of about RMB 3,568. We therefore esti-
mate that the value of forgone transaction is about RMB 4.75 billion per year. This is likely
an upper bound on foregone consumption as some of these transactions are probably deferred
rather than permanently foregone. As shown in section 5.2, the effect on bank-card use ap-
pears to concentrate on “deferrable” categories, many of which are temporally substitutable
in nature (such as supermarkets trips). Summing up the costs numbers of defensive goods
and forgone consumption, we conclude that the cost of the information program is around
RMB 13 billion, which is an order of magnitude smaller than the health benefits. Finally,
the estimated expenses to set up the 1,300 monitoring stations and broadcast the pollution
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information online is estimated to be RMB 2-5 billion, a rather trivial number relative to
the discounted future benefit in saved lives.

7 Conclusion

This paper examines the role of pollution information in shaping how ambient air pollution
affects household behavior and health outcomes. The focus is on a watershed policy change
in China whereby air pollution monitoring stations are installed and real-time pollution in-
formation is made public by the government. Based on several rich and unique data sets,
our analysis provides consistent evidence that the pollution monitoring and disclosure pro-
gram led to a cascade of changes such as increased pollution access and awareness, more
pronounced short- and long-term avoidance behavior, as well as muted pollution-health re-
lationship. The findings suggest that the value of the program arising from improved health
is an order of magnitude larger than its cost.

China’s experience offers an important lesson for other developing countries that are ex-
periencing severe environmental challenges. The infrastructure for monitoring environmental
quality and disclosing information is often inadequate in those countries. As income rises,
the demand for environmental quality increases in these countries and households are better
able to adapt to the changing environment. Providing real-time pollution monitoring data,
combined with effective dissemination infrastructure such as smartphones and internet that
are now commonly available among developing countries, could prove to be a powerful tool to
help households mitigate health damages from environmental pollution in other developing
countries. In addition, while our study is in the context of environmental quality, the large-
scale information program could offer guidance in better leveraging information provision to
address issues related to food and nutrition, traffic safety, as well as risky health behaviors.

31



References
Allcott, Hunt. 2013. “The Welfare Effects of Misperceived Product Costs: Data and Cal-
ibrations from the Automobile Market.” American Economic Journal: Economic Policy,
5(3): 30–66.

Andrews, Steven. 2008. “Inconsistencies in air quality metrics: ‘Blue Sky’ days and PM10
concentrations in Beijing.” Environmental Research Letters, 034009(3).

Arceo, Eva, Rema Hanna, and Paulina Oliva. 2015. “Does the Effect of Pollution
on Infant Mortality Differ Between Developing and Developed Countries? Evidence from
Mexico City.” Economic Journal, 126: 257–280.

Bai, Jie. 2018. “Melons as Lemons: Asymmetric Information, Consumer Learning and
Quality Provision.” Working Paper.

Banzhaf, H. Spencer, and Randall P. Walsh. 2008. “Do People Vote with Their Feet?
An Empirical Test of Tiebout.” American Economic Review, 98: 843–863.

Barwick, Panle Jia, Shanjun Li, Deyu Rao, and Nahim Bin Zahur. 2018. “The
Morbidity Cost of Air Pollution: Evidence from the World’s Largest Payment Network.”
NBER Working Paper.

Bayer, Patrick, Nate Keohane, and Christopher Timmins. 2009. “Migration and
Hedonic Valuation: The Case of Air Quality.” Journal of Environmental Economics and
Management, 58: 1–14.

Bernheim, B. Douglas, and Antonio Rangel. 2009. “Beyond Revealed Preference:
Choice-Theoretic Foundations for Behavioral Welfare Economics.” The Quarterly Jour-
nal of Economics, 124(1): 51–104.

Bernheim, B. Douglas, Andrey Fradkin, and Igor Popov. 2015. “The Welfare Eco-
nomics of Default Options in 401(k) Plans.” American Economic Review, 105(9): 2798–
2837.

Bollinger, Bryan, Phillip Leslie, and Alan Sorensen. 2011. “Calorie posting in chain
restaurants.” American Economic Journal: Economic Policy, 3(1): 91–128.

Chay, Kenneth Y., and Michael Greenstone. 2005. “Does air quality matter? Evidence
from the housing market.” Journal of political Economy, 113(2): 376–424.

Chen, Shuai, Paulina Oliva, and Peng Zhang. 2017. “The Effect of Air Pollution on
Migration: Evidence from China.” NBER Working Paper No. 24036.

Chen, Yuyu, Avraham Ebenstein, Michael Greenstone, and Hongbin Li. 2013.
“Evidence on the impact of sustained exposure to air pollution on life expectancy from
China’s Huai River policy.” Proceedings of the National Academy of Sciences, 110: 12936–
12941.

Chen, Yuyu, Ginger Jin, Naresh Kumar, and Guang Shi. 2012. “Gaming in Air Pol-
lution Data? Lessons from China.” B.E. Journal of Economic Analysis Policy, 3(12): e313

32



– e323.

Chetty, Raj, Adam Looney, and Kory Kroft. 2009. “Salience and Taxation: Theory
and Evidence.” American Economic Review, 99(4): 1145–77.

Craft, Erik D. 1998. “The Value of Weather Information Services for Nineteenth-Century
Great Lakes Shipping.” American Economic Review, 88(5): 1059–76.

Currie, Janet, Lucas Davis, Michael Greenstone, and Reed Walker. 2015. “Envi-
ronmental Health Risks and Housing Values: Evidence from 1,600 Toxic Plant Openings
and Closings.” American Economic Review, 105(2): 678–709.

Cutter, W. Bowman, and Matthew Neidell. 2009. “Voluntary information programs
and environmental regulation: Evidence from ‘Spare the Air’.” Journal of Environmental
Economics and Management, 58(3): 253 – 265.

Davis, Lucas W. 2011. “The effect of power plants on local housing values and rents.”
Review of Economics and Statistics, 93(4): 1391–1402.

Deschenes, Olivier, Michael Greenstone, and Joseph Shapiro. 2017. “Defensive In-
vestments and the Demand for Air Quality: Evidence from the NOx Budget Program.”
American Economic Review, 107(10): 2958–89.

Dranove, David, and Ginger Zhe Jin. 2010. “Quality Disclosure and Certification: The-
ory and Practice.” Journal of Economic Literature, 48(4): 935–63.

Ebenstein, Avraham, Maoyong Fan, Michael Greenstone, Guojun He, and
Maigeng Zhou. 2017. “New evidence on the impact of sustained exposure to air pol-
lution on life expectancy from China’s Huai River Policy.” Proceedings of the National
Academy of Sciences, 114: 10384–10389.

Fioletov, V. E., C. A. McLinden, N. Krotkov, M. D. Moran, and K. Yang. 2011.
“Estimation of SO2 emissions using OMI retrievals.” Geophysical Research Letters, 38(21).

Freeman, Richard, Wenquan Liang, Ran Song, and Christopher Timmins. 2019.
“Willingness to pay for clean air in China.” Journal of Environmental Economics and
Management, 94: 188–216.

Ghanem, Dalia, and Junjie Zhang. 2014. “ ‘Effortless Perfection:’ Do Chinese cities
manipulate air pollution data?” Journal of Environmental Economics and Management,
68(2): 203 – 225.

Graff Zivin, Joshua, and Matthew Neidell. 2009. “Days of haze: Environmental in-
formation disclosure and intertemporal avoidance behavior.” Journal of Environmental
Economics and Management, 58(2): 119–128.

Greenstone, Michael, and B. Kelsey Jack. 2015. “Envirodevonomics: A Research
Agenda for an Emerging Field.” Journal of Economic Literature, 53(1): 5–42.

Greenstone, Michael, and Patrick Schwarz. 2018. “Is China Winning its War on Pol-
lution?” Report from Energy Policy Institute at the University of Chicago.

33



Greenstone, Michael, Guojun He, Ruixue Jia, and Tong Liu. 2019. “Can Technol-
ogy Solve the Principal-Agent Problem? Evidence from Pollution Monitoring in China.”
Working Paper.

Grossman, Michael. 1972. “On the Concept of Health Capital and Demand for Health.”
The Journal of Political Economy, 80: 223–255.

Grossman, Sanford J., and Joseph E. Stiglitz. 1976. “Information and Competitive
Price Systems.” The American Economic Review, 66(2): 246–253.

Hao, Jiming, and Litao Wang. 2005. “Improving Urban Air Quality in China: Beijing
Case Study.” Journal of the Air & Waste Management Association, 55(9): 1298–1305.

Hastings, Justine S., and Jeffrey M. Weinstein. 2008. “Information, School Choice,
and Academic Achievement: Evidence from Two Experiments*.” The Quarterly Journal
of Economics, 123(4): 1373–1414.

He, Guojun, Maoyong Fan, and Maigeng Zhou. 2016. “The effect of air pollution
on mortality in China: Evidence from the 2008 Beijing Olympic Games.” Journal of
Environmental Economics and Management, 79: 18–39.

Hilton, Ronald W. 1981. “The Determinants of Information Value: Synthesizing Some
General Results.” Management Science, 27(1): 57–64.

Hirshleifer, Jack. 1971. “The Private and Social Value of Information and the Reward to
Inventive Activity.” The American Economic Review, 61(4): 561–574.

Huang, Jing, Xiaochuan Pan, Xinbiao Guo, and Guoxing Li. 2018. “Health impact
of China’s Air Pollution Prevention and Control Action Plan: an analysis of national air
quality monitoring and mortality data.” The Lancet Planetary Health, 2(7): e313 – e323.

Ito, Koichiro. 2014. “Do Consumers Respond to Marginal or Average Price? Evidence from
Nonlinear Electricity Pricing.” American Economic Review, 104(2): 537–63.

Ito, Koichiro, and Shuang Zhang. 2018. “Willingness to Pay for Clean Air: Evidence
from Air Purifier Markets in China.” Journal of Political Economy. forthcoming.

Jagnani, Maulik, Christopher Barrett, Yanyan Liu, and Liangzhi You. 2018.
“Within-Season Producer Response to Warmer Temperatures: Defensive Investments by
Kenyan Farmers.” Working Paper.

Jessoe, Katrina, and David Rapson. 2014. “Knowledge Is (Less) Power: Experimental
Evidence from Residential Energy Use.” American Economic Review, 104(4): 1417–38.

Jin, Ginger Zhe, and Phillip Leslie. 2003. “The Effect of Information on Product Qual-
ity: Evidence from Restaurant Hygiene Grade Cards.” The Quarterly Journal of Eco-
nomics, 118(2): 409–451.

Kling, Jeffrey R., Sendhil Mullainathan, Eldar Shafir, Lee C. Vermeulen, and
Marian V. Wrobel. 2012. “ Comparison Friction: Experimental Evidence from Medicare
Drug Plans.” The Quarterly Journal of Economics, 127(1): 199–235.

34



Landrigan, Philip, Richard Fuller, Nereus J R Acosta, Olusoji Adeyi, Maureen
Cropper, Alan Krupnick, Michael Greenstone, and et al. 2018. “The Lancet Com-
mission on pollution and health.” The Lancet, 391(10119): 462–512.

Lave, Lester B. 1963. “The Value of Better Weather Information to the Raisin Industry.”
Econometrica, 31(1/2): 151–164.

Liu, Mengdi, Ronald Shadbegian, and Bing Zhang. 2017. “Does environmental reg-
ulation affect labor demand in China? Evidence from the textile printing and dyeing
industry.” Journal of Environmental Economics and Management, 86: 277–294.

Mastromonaco, Ralph. 2015. “Do environmental right-to-know laws affect markets? Cap-
italization of information in the toxic release inventory.” Journal of Environmental Eco-
nomics and Management, 71: 54 – 70.

Muehlenbachs, Lucija, Elisheba Spiller, and Christopher Timmins. 2015. “The
Housing Market Impacts of Shale Gas Development.” American Economic Review,
105(12): 3633–59.

Nelson, Richard R., and Jr. Winter, Sidney G. 1964. “A Case Study in the Economics
of Information and Coordination the Weather Forecasting System.” The Quarterly Journal
of Economics, 78(3): 420–441.

Oberholzer-Gee, Felix, and Miki Mitsunari. 2006. “Information regulation: Do the
victims of externalities pay attention?” Journal of Regulatory Economics, 30(2): 141–158.

Saberian, Soodeh, Anthony Heyes, and Nicholas Rivers. 2017. “Alerts work! Air
quality warnings and cycling.” Resource and Energy Economics, 49: 165 – 185.

Shin, Jeong-Shik. 1985. “Perception of Price When Price Information Is Costly: Evidence
from Residential Electricity Demand.” The Review of Economics and Statistics, 67(4): 591–
598.

Shrader, Jeffrey. 2018. “Expectations and adaptation to environmental risks.” Working
Paper.

Smith, V. Kerry, and F. Reed Johnson. 1988. “How do Risk Perceptions Respond to
Information? The Case of Radon.” The Review of Economics and Statistics, 70(1): 1–8.

Stigler, George J. 1961. “The economics of information.” Journal of Political Economy,
69(3): 213–225.

Stigler, George J. 1962. “Information in the Labor Market.” Journal of Political Economy,
70(5): 94–105.

Streets, David G., Timothy Canty, Gregory R. Carmichael, Benjamin de Foy,
Russell R. Dickerson, Bryan N. Duncan, David P. Edwards, John A. Haynes,
Daven K. Henze, Marc R. Houyoux, Daniel J. Jacob, Nickolay A. Krotkov,
Lok N. Lamsal, Yang Liu, Zifeng Lu, Randall V. Martin, Gabriele G. Pfister,
Robert W. Pinder, Ross J. Salawitch, and Kevin J. Wecht. 2013. “Emissions esti-

35



mation from satellite retrievals: A review of current capability.” Atmospheric Environment,
77: 1011 – 1042.

Sun, Cong, Matthew E. Kahn, and Siqi Zheng. 2017. “Self-protection investment exac-
erbates air pollution exposure inequality in urban China.” Ecological Economics, 131: 468
– 474.

Tanaka, Shinsuke. 2015. “Environmental regulations on air pollution in China and their
impact on infant mortality.” Journal of Health Economics, 42: 90 – 103.

Van Donkelaar, Aaron, Randall V Martin, and Rokjin J Park. 2006. “Estimating
ground-level PM2. 5 using aerosol optical depth determined from satellite remote sensing.”
Journal of Geophysical Research: Atmospheres, 111(D21).

Wang, Alex L. 2017. “Explaining environmental information disclosure in China.” Ecology
LQ, 44: 865.

Wichman, Casey J. 2017. “Information provision and consumer behavior: A natural ex-
periment in billing frequency.” Journal of Public Economics, 152: 13 – 33.

Yi, Honghong, Jiming Hao, and Xiaolong Tang. 2007. “Atmospheric environmental
protection in China: Current status, developmental trend and research emphasis.” Energy
Policy, 35(2): 907 – 915.

Yin, Peng, Guojun He, Maoyong Fan, Kowk Yan Chiu, Maorong Fan, Chang Liu,
An Xue, Tong Liu, Yuhang Pan, Quan Mu, et al. 2017. “Particulate air pollution
and mortality in 38 of China’s largest cities: time series analysis.” bmj, 356: j667.

Zhang, Bing, Xiaolan Chen, and Huanxiu Guo. 2018. “Does central supervision en-
hance local environmental enforcement? Quasi-experimental evidence from China.” Jour-
nal of Public Economics, 164: 70–90.

Zhang, Junjie, and Quan Mu. 2018. “Air pollution and defensive expenditures: Evidence
from particulate-filtering facemasks.” Journal of Environmental Economics and Manage-
ment, 92: 517 – 536.

Zhang, Xin, Xi Chen, and Xiaobo Zhang. 2018. “The impact of exposure to air
pollution on cognitive performance.” Proceedings of the National Academy of Sciences,
115(37): 9193–9197.

Zheng, Siqi, and Matthew E Kahn. 2008. “Land and residential property markets in a
booming economy: New evidence from Beijing.” Journal of Urban Economics, 63(2): 743–
757.

Zhou, Maigeng, Haidong Wang, Jun Zhu, Wanqing Chen, Linhong Wang, Shiwei
Liu, Yichong Li, Lijun Wang, Yunning Liu, Peng Yin, et al. 2016. “Cause-specific
mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for
the Global Burden of Disease Study 2013.” The Lancet, 387(10015): 251–272.

Zivin, Joshua Graff, and Matthew Neidell. 2009. “Days of haze: Environmental in-

36



formation disclosure and intertemporal avoidance behavior.” Journal of Environmental
Economics and Management, 58(2): 119 – 128.

37



Figure 1: November 2011 “Widespread, Dense Fog Event”

(a) News coverage

(b) Satellite picture of the event

(c) Satellite-retrieved pollution levels

Notes: This figure illustrates a “widespread, dense fog event” around November 27, 2011 which is likely a
major pollution event. Panel A, sourced from China Meteorological Administration, shows official news
coverage of the event. Panel B, sourced from NASA, shows satellite views of China on the same day. Panel
C, sourced from NASA MODIS algorithm, shows a measurement of satellite-based particulates pollution
(aerosol optical depth) levels.
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Figure 2: Air Pollution Monitoring Roll-out

Notes: This map shows prefecture-city by the initiation date of real-time air pollution monitoring. “Not
mentioned” are cities where the timing of monitoring is not mentioned in the government’s policy notice.
“Mortality sample” are centroids of counties included in the DSP mortality data.
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Figure 3: Changes in Pollution Information Exposure: News
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(a) People’s Daily news “smog” mention
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(b) “Smog” mentions before and after monitoring

Notes: Panel A plots the number of days in each month when the People’s Daily (official newspaper of the
Chinese government) published articles containing “smog” in content. Each dot represents a month. Line
shows annual averages. Panel B mean standardized “smog” mentions associated with the city, defined as
news that mention both “smog” and the city name, as a function of month since monitoring initiation.
Event month -1 is normalized to 0. The underlying regression controls for month-of-year and year
indicators. Line shows quarterly averages.
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Figure 4: Changes in Pollution Information Exposure: Mobile Phone Apps
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Notes: This chart shows release-date distribution of Apple App Store apps related to pollution (solid dots
and line). Averaged release-time distribution for apps in other categories (dashed dots and line) includes
game, music, video, reading, finance, sports, education, shopping, and navigation. For each category,
sample is restricted to the first 200 apps returned by the Apple API given the search key. Data are
accessed on December 27, 2015. Pollution apps released before 2013 typically stream weather information
and later incorporated real-time air quality contents post 2013. These apps are therefore categorized as
pollution apps by the time we queried for the Appstore data.
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Figure 5: Changes in Pollution Awareness: Baidu Smog Search Index
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(a) Baidu “smog” search index at the national level
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(b) Baidu “Smog” search index before and after a city implements the information program

Notes: Panel A plots raw monthly trends in Baidu Search Index for the word “smog”. The graph omits two
dots with exceptionally high search index for readability purpose. These dots correspond to December 2013
(index = 20,942) and Decembet 2015 (index = 24,679). Line shows annual averages. Panel B plots mean
standardized “smog” search index as a function of months since monitoring initiation. Event month -1 is
normalized to 0. The underlying regression controls for month-of-year and year indicators. Line shows
quarterly averages.
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Figure 6: Changes in Air Purifier Sales (50 Cities)
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(b) Air purifier sales before and after monitoring

Notes: Panel A plots raw monthly trends in total air purifier sales from offline venues. The graph omits
two dots with exceptionally high sales for readability purpose. These dots correspond to December 2013
(sales = 61,605 units) and Decembet 2015 (sales = 74,352 units). Line shows annual averages. Panel B
plots log per capita air purifier sales as a function of months since monitoring initiation. Event month -1 is
normalized to 0. The underlying regression controls for month-of-year and year indicators. Line shows
quarterly averages.
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Figure 7: Changes in Weekly Bank Card Transaction-Pollution Gradient

diff =  -19.8** (8.67)

-6
0

-4
0

-2
0

0
20

40
60

El
as

tic
ity

: t
ra

ns
. p

er
 1

0,
00

0 
ca

rd
s 

/ p
ol

lu
tio

n

-24 -18 -12 -6 0 6 12
Months before/after monitoring

Notes: This graph shows the relationship between weekly bank card transcation rate and log satellite-based
pollution as a function of time since monitoring initiation. The regression controls for prefectiry-city FEs,
week-of-year FEs, and year FEs. Regressions are weighted by the number of active cards in the city.
Shaded region shows 95% confidence interval constructed from standard errors clustered at the
prefecture-city level. Number of observations = 83,122.

44



Figure 8: Original (10km) vs. Oversampled (1km) AOD, Beijing 2006-2014 Average

Notes: This map shows 2006-2014 average aerosol optical depth (AOD) level for the municipality of
Beijing. Left panel shows MODIS AOD at the original 10×10km resolution. Right panel shows AOD
oversampled to 1×1km resolution. Dots show centroid locations of communities (i.e., “jiedao”) in the
housing transaction data.

45



Figure 9: Changes in Annual Housing Prices-Distance to Polluter Gradient, Beijing

Before monitoring

After monitoring

Observations

0
50

0
10

00
15

00
20

00
25

00
O

bs
er

va
tio

ns

-1
-.7

5
-.5

-.2
5

0
.2

5
.5

lo
g(

ho
ur

si
ng

 p
ric

e)

<1 1-
2

2-
3

3-
4

4-
5

5-
6

6-
7

7-
8

8-
9

9-
10 >1

0

Distance to nearest major polluter (km)

(a) Before vs. after monitoring

-0.266***
(0.072)

-0.107
(0.096)

0.0126
(0.1239)

-1
-.7

5
-.5

-.2
5

0
.2

5
.5

lo
g(

ho
ur

si
ng

 p
ric

e)

<1 1-
2

2-
3

3-
4

4-
5

5-
6

6-
7

7-
8

8-
9

9-
10 >1

0

Distance to nearest major polluter (km)

(b) Difference estimates

Notes: This graph shows coefficients from a regression of complex×annual log housing prices on distance
(in 1-km bins) to nearest major polluter before and after January 2013 when Beijing initiated ambient
pollution monitoring. In panel A, estimations are done separately for time before (dashed line) and after
(solid line) monitoring began, with prices normalized to 0 for the >10-km bin. The histogram (right axis)
plots total number of observations by distance bins. In panel B, the difference estimation pools
before/after samples. All regressions control for district×year FEs, community FEs, and years-on-market
FEs. Shaded region shows 95% confidence interval constructed from standard errors two-way clustered at
the community level and the district×year level. Number of observations = 3,827.
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Figure 10: Changes in Quarterly Mortality-Pollution Gradient
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Notes: This graph shows coefficients from a regression of log mortality rate on log satellite-based pollution
as a function of quarters since monitoring initiation. The (-10 to 6) month event window is chosen so that
the underlying sample is a balanced panel of cities. Coefficients are obtained from a single regression,
controlling for prefectiry-city FEs, quarter-of-year FEs, and year FEs. Shaded region shows 95% confidence
interval constructed from standard errors clustered at the prefecture-city level. Number of observations =
2,620.
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Table 1: Changes in Weekly Bank Card Transaction-Pollution Gradient

Dep. var.: Number of transactions per 10,000 active cards in a city×week

(1) (2) (3) (4)

Log(Pollution) 8.39 6.07 7.96 10.3
(8.19) (8.78) (5.75) (7.20)

Log(Pollution) × 1(after monitoring) -19.8** -22.8** -19.4** -25.1**
(8.67) (10.8) (7.77) (10.1)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

N 83,122 83,122 83,122 83,122

Notes: “Log(Pollution)” is logged AOD in the city×week. Mean of dependent variable is 869.1 transactions per week per
10,000 cards. “region” is a conventional partition of cities by location: North (36 cities), Northeast (38 cities), East (105
cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered at the
prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 2: Changes in Beijing’s Housing Price-Pollution Gradient

Dep. var.: Log housing price index in a complex×year

(1) (2) (3) (4)

Within complex Within district×year
Identifying variation: across years across communities

Log(pollution) 0.090 0.063 0.009 -0.103
(0.104) (0.121) (0.239) (0.244)

Log(lagged pollution) 0.034 0.335
(0.124) (0.216)

Log(pollution)×1(after 2013) -0.591* -0.730* -0.850* -0.753*
(0.299) (0.434) (0.436) (0.432)

Log(lagged pollution)×1(after 2013) -0.377 -0.216
(0.490) (0.754)

FEs: complex X X
FEs: year X X
FEs: years on-market X X X X
FEs: community X X
FEs: district×year X X

N 3,372 2,715 3,827 3,266
N (complex) 988 801 1,224 1,129
N (community) 179 167 180 172
N (district) 16 16 16 16

Notes: A complex is a real estate project site that often contains multiple buildings. The dependent variable is logged nominal
housing price adjusted for quadratic floor size, floor indicators, and sale month-of-year indicators. “Log(pollution)” is logged
AOD level at the (oversampled) 1km resolution corresponding to the complex’s geographic coordinates. Standard errors are
two-way clustered at the community (i.e., “jiedao”) level and the district×year level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 3: Changes in Quarterly Mortality-Pollution Gradient

Dep. var.: Log mortality rate in a city×quarter

(1) (2) (3) (4)

Log(Pollution) 0.014 0.034 0.039* 0.041*
(0.019) (0.021) (0.020) (0.023)

Log(Pollution) × 1(after monitoring) -0.048*** -0.055*** -0.055*** -0.046**
(0.017) (0.020) (0.021) (0.021)

FEs: city X X X X
FEs: quarter-of-year X
FEs: year X
FEs: quarter-of-sample X X
FEs: region×year X
FEs: region×quarter-of-sample X

N 2,620 2,620 2,620 2,620

Notes: “Log(Pollution)” is logged AOD in the city×quarter. “region” is a conventional partition of cities by location: North
(36 cities), Northeast (38 cities), East (105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities).
Standard errors are clustered at the prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 4: Changes in Mortality-Pollution Gradient: Heterogeneity by City Characteristics

(1) (2) (3) (4) (5)
Per cap. Per cap.

Per cap. Frac. Per cap. residential mobile
City characteristics: income urban hospitals electricity phones

Panel A. Dep. var. = Number of transactions per 10,000 active cards in a city×week

Log(Pollution) × 1(after monitoring) -13.0* -14.2 -15.1* -20.2** -0.191
× 1(below average) (7.48) (9.10) (9.11) (8.20) (7.05)

Log(Pollution) × 1(after monitoring) -25.5** -25.8** -33.1*** -22.6** -35.1***
× 1(above average) (12.0) (10.3) (10.6) (10.6) (11.6)

Equality p−value 0.354 0.340 0.175 0.859 0.006
N 66,854 66,854 67,046 64,540 67,046
67,046

Panel B. Dep. var. = Log mortality rate in a city×quarter

Log(Pollution) × 1(after monitoring) -0.052** -0.032 -0.036 -0.015 -0.025
× 1(below average) (0.023) (0.020) (0.026) (0.025) (0.020)

Log(Pollution) × 1(after monitoring) -0.046 -0.081*** -0.066*** -0.073* -0.080**
× 1(above average) (0.029) (0.030) (0.021) (0.044) (0.035)

Equality p−value 0.888 0.139 0.348 0.246 0.145
N 2,560 2,220 2,220 2,120 2,220

Notes: This table reports heterogeneous purchase-pollution (panel A) and mortality-pollution (panel B) gradient changes by
above/below average city characteristics. Each column corresponds to a separate regression: column 1 = per capita personal
dispensable income; column 2 = share of urban population; column 3 = per capita number of hospitals; column 4 = per
capita residential electricity use; column 5 = share of mobile phone users. All city characteristics are computed as 2011-2015
averages. “Equality p−value” tests for equality across the above/below average coefficients. All regressions control for city,
month-of-sample, and region-by-year fixed effects. All regressions include full sets of lower-order interaction terms which are
not reported in the table in the interest of space. Standard errors are clustered at the prefecture-city level. *: p < 0.10; **:
p < 0.05; ***: p < 0.01.
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Appendices. For Online Publication Only

Appendix A: Proof of Proposition 1

Individuals choose optimal consumption x and defensive investment a to maximize utility

under the perceived pollution level c0 as described in Section 3.1. The Lagrangian equation

is:

L = U(x, h(c0, a)) + λ [I + w ∗ g(h(c0, a))− x− pa ∗ a]

where λ is the Lagrange multiplier and denotes the marginal utility per dollar. The first

order conditions are:

∂L

∂x
= 0⇒ Ux − λ = 0

∂L

∂a
= 0⇒ (Uh + λ ∗ w ∗ gh)

∂h(c0, a)

∂a
− λpa = 0 (A.1)

∂L

∂λ
= 0⇒ I + w ∗ g(h)− x− pa ∗ a = 0

where Ux, Uh, and gh denote partial derivatives. We first show that under Assumptions 1-3,

optimal avoidance (weakly) increases in perceived pollution:

da

dc
≥ 0.

Let f denote the first order condition w.r.t avoidance (equation A.1):

f = (Uh + λ ∗ w ∗ gh)
∂h

∂a
− λpa = 0
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Applying the implicit function theorem to f , we obtain:

da

dc
= −∂f/∂c

∂f/∂a
= −

[Uhh + λ ∗ w ∗ ghh] ∗ ∂h∂c ∗
∂h
∂a

+ (Uh + λ ∗ w ∗ gh) ∗ ∂2h
∂a∂c

(Uhh + λ ∗ w ∗ ghh) ∗
(
∂h
∂a

)2
+ (Uh + λ ∗ w ∗ gh) ∗ ∂

2h
∂a2

= −A+B

C +D

where Uhx, Uhh, ghh are second order derivatives. Under the assumption of diminishing

marginal utility, decreasing marginal labor product of health, and decreasing health ben-

efit of avoidance, C + D ≤ 0.30 Similarly, A + B ≥ 0. Hence, avoidance increases weakly

in (perceived) pollution. The key assumption for this result is dh2/dadc > 0. When pollu-

tion deteriorates, avoidance restores health more effectively (that is, the marginal benefit of

avoidance is large with bad pollution). After the information program, individuals observe

the actual pollution c, which is higher than previously perceived level: c0. The above analysis

indicates that individuals would increase the level of avoidance post the policy intervention:

a(c) ≥ a(c0).

As the marginal health benefit of avoidance is positive from Assumption (A1) in Section

3.1, the health condition improves with avoidance:

h(c, a(c)) ≥ h(c, a(c0)).

Due to the lack of real-time information on pollution prior to the information program,

perceived pollution c0 is unlikely to respond to day-to-day changes in the actual pollution.

Hence, the total derivative of health w.r.t. pollution is:

dh

dc
|c0 =

∂h

∂c
+
∂h

∂a
∗ da
dc0
∗ dc0
dc

=
∂h

∂c

30At the optimal a and X, Uh + λ ∗ w ∗ g(h) > 0 by construction. In addition, Uhh, ghh, ∂
2h/∂a2 < 0.

Another way to show C +D ≤ 0 is that this is the second order condition for the optimal a.
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where the second equation follows from the fact that dc0/dc = 0. Post the information

program, the perceived pollution is equal to the actual pollution and individuals can engage

in effective avoidance to moderate the negative impact of pollution. The total derivative of

health w.r.t. pollution is:

dh

dc
|c =

∂h

∂c
+
∂h

∂a
∗ da
dc
≥ ∂h

∂c

The second line follows from the fact that avoidance increases in (perceived) pollution and

improves the health stock.

Lastly, let V (c, c) denote the indirect utility when individuals accurately perceive pollu-

tion c0 = c. In that case, the experience utility and decision utility coincides. V (c, c0) is

the utility achieved by maximizing the decision utility under perceived pollution of c0. Since

utility is maximized under full information, we have:

V (c, c) ≥ V (c, c0).

Putting these together, we derive the following predictions of the information program:

• Avoidance behavior increases after the program: a(c) > a(c0)

• Health improves and the (downward slopping) health-pollution response curve flattens:

h(c, a(c)) > h(c, a(c0)),
dh

dc
|c0=c ≥

dh

dc c0<c

• Individual utility increases: V (c, c) > V (c, c0)
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Appendix B: A Simple Example

Suppose the health production function is:

h(c, a) = max{0, h0 −
c

a
}, hc > 0, c > 0, a > 0

where h0 is the initial health stock with zero pollution, c is pollution and a is avoidance.

Assume that the labor production function is an identify function: g(h) = h. The budget

constraint is:

I + w ∗ h(c, a) ≥ x+ pa ∗ a

Suppose the utility function is:

U(x, h) = x

These functions satisfy Assumptions 1 and 2. In this simple example, maximizing utility

subject to the budget constraint is equivalent to choosing a to maximize the amount of

numeraire that can be afforded by the budget constraint:

max
a
I + w ∗ h(c, a)− pa ∗ a

The optimal avoidance a satisfies:

a∗ = min{
√
w ∗ c
pa

,
w ∗ h0
pa
}

which (weakly) increases in c. Optimal health stock h = max{0, h0 −
√

c∗pa
w
} decreases

in c and reaches the minimum of zero when pollution exceeds w∗h20
pa

. Consumption of the

numeraire good and utility also decrease with c. When pollution exceeds w∗h20
pa

, the health

stock is at the minimum, avoidance stops increasing in c and is kept at w∗h0
pa

. Consumption

of the numeraire good also reaches the minimum level of I −√w ∗ pa. Finally, to ensure an

interior solution, we need I ≥ √w ∗ pa.
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Appendix C: Identifying the Slope Change

To examine the impact of the information program om the pollution-outcome relationship,

our analysis uses the following framework (simplifying notations in equation 2):

yct = α× pct + β × pct × dct + x′ctγ + εct, (C.2)

where c denotes a city and t denotes time (e.g., day or week). yct is the outcome variable.

pct measures ambient air quality and could be correlated with the error term due to unob-

servables or measurement error as discussed in the main text. dct represents the treatment

dummy and it turns to one in three waves across cities based on the staggered roll-out sched-

ule. xct includes a set of controls including weather conditions and rich spatial and temporal

fixed effects such as city fixed effects and time fixed effects. εct is the error term. The key

parameter of interest is β, the change in the slope of pollution-outcome relationship.

Although pct could be endogenous due to unobservables as discussed in the main text,

the OLS estimate of β is consistent under the follow two assumptions.

Assumption (B1): E (εct|dct, xct) = 0.

Assumption (B2): Pollution pct = x′ctθ + νct, where E (vct|xct) = 0, and E (εctνct) = σεν .

Proof: We denote the set of regressors to be w′ct as three blocks: (x′ct, pct, pctdct) , where

xct is a k by 1 vector of controls and wct is a (k+2) by 1 vector. Denote the vector of all

parameters as η. For the OLS estimate η̂: plimη̂ = η + [E(wctw′ct]−1[E(wctεct).

The focus of our empirical analysis is β and in order to show that β̂ is consistent, it

suffices to show that the element in [E(wctw′ct]−1[E(wctεct) corresponding to the coefficient
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for dipi is zero.

E(wctεct) =


0

E (pctεct)

E (pctdctεct)

 , E(wctw′ct) =


E (xctx′ct) E (xctpct) E (xctpctdct)

E (pctx′ct) E (p2
ct) E (p2

ctdct)

E (pctdix′ct) E (p2
ctdct) E

(
p2
ctd

2
ct

)
 .

E(wctw′ct)
−1 =

adj (E(wctw′ct))
det(E(wctw′ct))

,

where adj (E(wctw′ct)) is the transpose matrix of cofactors of E(wctw′ct). To consider the

OLS estimate of β, we only need to examine the cofactors corresponding to third column of

the E(wctw′ct). In particular,

plimβ − β =
c23 ∗ E (pctεct) + c33 ∗ E (pctdctεct)

det(E(wctw′ct))
. (C.3)

We now examine each component in the numerator of equation (C.3),

c23 = − det

 E (xctx′ct)k×k E (xctpctdct)k×1

E (pctx′ct)1×k E (p2
ctdct)1×1


= − det

(
E
(
p2
ctdct

)
− E (pctx

′
ct)E (xctx′ct)

−1
E (xctpctdct)

)
det (E (xctx′ct))

c33 = det

 E (xctx′ct)k×k E (xctpct)k×1

E (pctx′ct)1×k E (p2
ct)1×1


= det

(
E
(
p2
ct

)
− E (pctx

′
ct)E (xctx′ct)

−1
E (xctpct)

)
det (E (xctx′ct))
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E (xctpctdct) = E (xctE (pctdct|xct)) = E (xctE (pct|xct)E (dct|xct)) = E (xctx′ctE (dct|xct)) θ

E (pctx
′
ct) = E (E (pct|xct) x′ct) = E (θ′xctx′ct)

E (xctpct) = E (xctE (pct|xct)) = E (xctx′ctθ)

E
(
p2
ctdct

)
= E

(
(x′ctθ + εct)

2 dct
)
= E (x′ctθθ

′xctE (dct|xct)) + σ2
εE (dct)

E
(
p2
ct

)
= E

(
(x′ctθ + εct)

2
)
= E (x′ctθθ

′xct) + σ2
ε .

Dropping the subscript for simplicity,

E
(
p2d
)
− E (px′)E (xx′)−1E (xpd) = E (x′θθ′xE (d|x)) + σ2

εE (d)

−θ′E (xx′)E (xx′)−1E (xx′E (d|x)) θ = σ2
εE (d) .

The last equality follows from the fact that x′θθ′x is a scalar and equal to θ′xx′θ.

E
(
p2
)
− E (px′)E (xx′)−1E (xp) = E (x′θθ′x) + σ2

ε − θ′E (xx′)E (xx′)−1E (xx′) θ

= σ2
ε .

Therefore, c23 = −E (d)σ2
ε det (E (xx′)), and c33 = σ2

ε det (E (xx′)).

E (pε) = E ((x′θ + v) ε) = σve

E (pdε) = E ((x′θ + v) dε) = E (x′dε) θ + E (vdε)

= E [x′dE (ε|x, d)] θ + E [dE (vε|d)] = σveE (d) .

Collecting terms, the consistency of OLS estimate of β follows:

plimβ̂ − β = c23E (pε) + c33E (pdε) = σve (c23 + c33E (d)) = 0.
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Appendix D: Figures and Tables

Figure D.1: List of Cities by Roll-out Waves and by Associated City Clusters

Beijing Xining Taizhou Wuhu Jinzhou Jimo Wujiang Yingkou Tongling Jixi Nanping Ezhou Guangyuan Chuxiong Dingxi Shihezi
Tianjin Hefei Lanzhou Maanshan Zhuzhou Pingdu Changshu Panjin Anqing Hegang Longyan Jinmen Suining Honghe Longnan Wujiaqu
Shijiazhuang Fuzhou Hangzhou Datong Xiangtan Laixi Zhangjiagang Huludao Chuzhou Shuangyashan Ningde Xiaogan Neijiang Wenshan Linxia
Tangshan Yinchuan Ningbo Yangquan Yueyang Zibo Kunshan Zigong Chizhou Yichun JingdezhenHuanggangLeshan Xishuangbanna Gannan
Qinhuangdao Wulumuqi Xi'an Changzhi Changde Zaozhuang Taicang Zhuji Xuancheng jiamusi Pingxiang Xianing Meishan Dali Haidong
Handan Jinan Jiaxing Linfen Zhangjiajie Dongying Haimen Jiayuguan Lüliang Qitaihe Xinyu Suizhou Guangan Dehong Haibei
Xingtai Nantong Huzhou Baotou Shaoguan Yantai Jurong Deyang Wuhai Heihe Yingtan Enshi Dazhou Nujiang Huangnan
Baoding Zhengzhou Shaoxing Chifeng Shantou Laizhou Fuyang Laiwu Tongliao Suihua Ganzhou Hengyang Yaan Dixing Hainan
Zhangjiakou Wuhan Jinhua Anshan Zhanjiang Penglai Lin’an Dezhou Hulunbeier Daxinganling Ji'an Shaoyang Bazhong Changdou Guoluo
Chengde Changsha Lasa Fushun Pingdingshan Zhaoyuan Jiaozhou Binzhou Bayannaoer Bengbu Yichun Yiyang Ziyang Shannan Yushu
Cangzhou Guangzhou Zhoushan Benxi Anyang Weifang Yiwu Heze Wulanchabu Huainan Fuzhou Chenzhou Aba Rikaze Haixi
Langfang Shenzhen Taizhou Yan'an Jiaozuo Shouguang Jiujiang Sanmenxia Xingan Huaibei Shangrao Yongzhou Ganzi Neiqu Wuzhong
Hengshui Zhuhai Kunming Jinzhou Jinchang Jining Quanzhou Weinan Xilinguole Jincheng Hebi Huaihua Liangshan Ali Guyuan

Taiyuan Foshan Xiamen Yichang Shizuishan Taian Eerduosi Zhangqiu Alashan Shuozhou Xinxiang Loudi Liupanshui Linzhi Zhongwei
Huhehaote Jiangmen Nanchang Baoji Kelamayi Weihai Wafangdian Nanchong Fuxin Huangshan Puyang Xiangxi Anshun Hanzhong Tulufan
Shenyang Zhaoqing Wenzhou Xianyang Kuerle Wendeng Maoming Yuxi Liaoyang Jinzhong Xuchang Wuzhou Bijie Yulin Hami
Yangzhou Huizhou Qingdao Jilin Kaifeng Rongcheng Meizhou Tieling Fuyang Luohe FangchenggangTongren Ankang Changji
Changchun Dongwan Dalian Qiqihaer Luoyang Rushan Shanwei Chaoyang Suzhou Nanyang Qinzhou Qianxinan Shangluo Boertala
Haerbin Zhongshan Lianyungang Daqinf Liuzhou Rizhao Heyuan Siping Liuan Shangqiu Guigang QiandongnanBaiyin Akesu
Shanghai Nanning Huaian Mudanjiang Guilin Zunyi Yangjiang Liaoyuan Haozhou Xinyang Yulin Qiannan Tianshui Kezilesu

Nanjing Haikou Xuzhou Jiaonan Beihai Linyi Qingyuan Tonghua Yuncheng Zhoukou Baise Baoshan Wuwei Kashi

Wuxi Chongqing Quzhou Jiangyin Sanya Qujing Chaozhou Baishan Xinzhou ZhumadianHezhou Shaotong Zhangye Hetian
Yancheng Chengdu Suqian Yixing Tongchuan Liaocheng Jieyang Songyuan Putian Huangshi Hechi Lijiang Pingliang Yili
Changzhou Guiyang Lishui Liyang Panzhihua Mianyang Yunfu Baicheng Sanming Shiyan Laibing Puer Jiuquan Tacheng
Suzhou Zhenjiang Jintan Luzhou Yibin Dandong Yanbian Zhangzhou Xiangyang Chongzuo Lincang Qingyang Aletai

Legend:
Jing-Jin-Ji Metropolitan Region, Yangtze River Delta Economic Zone, Pearl River Delta Metropolitan Region, Direct-administered municipalities, Provincial Capitals

Environmental Improvement Priority Cities (designated 2007),  National Environmental Protection Exemplary Cities (awarded between 1997-2012)

Wave 1 cities Wave 2 cities Wave 3 cities

Other prefecture-level cities

Notes: The three panels show cities included in each roll-out wave of the information program. Color coding indicates how cities are logistically
divided into roll-out waves, according to the 2012 government notice (GB3095-2012).
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Figure D.2: Screenshot of the Government’s Air Quality Disclosure Platform

Notes: This figure shows a screenshot of the Ministry of Environmental Protection’s real time air quality
disclosure platform as of September 25, 2016.
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Figure D.3: Screenshot of an Air Quality App

Notes: This figure shows a screenshot of a typical air quality app. The left panel shows the AQI in the city
of Shanghai for that hour is 101 (PM2.5=75 ug/m3). The right panel shows air quality readings at different
locations within Shanghai.
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Figure D.4: Consumption Trends: UnionPay vs. National Accounts

National account: GDP

National account: Consumption

UnionPay cards expenditure
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Notes: This figure plots annual GDP (triangles), consumption (squares) reported by the National Bureau
of Statistics of China (NBS), and total bank card spendings ×100 (circles) aggregated from the UnionPay
1% bank card data. UnionPay data excludes transactions in the business wholesale categories.
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Figure D.5: UnionPay Bank Card Transaction Trends
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(b) Spending per transaction

Notes: Each dot represents transaction rate (panel A) and spending per transaction (panel B) on a day.
Solid dots show weekdays and hollow dots show weekends. Lines show quarterly averages.
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Figure D.6: UnionPay Bank Card Transaction by Prefecture-City, 2011-2015 Average

(a) Number of active cards

(b) Number of transactions per 100,000 cards

Notes: The maps show 2011-2015 average number of active UnionPay bank cards (panel A) and
transactions per 1,000 cards (panel B) at the prefecture-city level. Orange lines show inter-provincial
borders.
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Figure D.7: Correlation between PM2.5 and AOD
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Notes: This graph shows city×day level average PM2.5 concentratoin (y-axis) by 100 equal bins of AOD
(x-axis), for time periods after monitoring began. Histograms show distribution of the two variables.
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Figure D.8: Permutation Tests of the Effect of Monitoring
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(a) Changes in bank card transaction-pollution gradient
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(b) Changes in mortality-pollution gradient

Notes: This plot shows the distribution of t-stats on the “Log(Pollution)×1(after monitoring)” term across
500 repetitions of random assignment of cities into information roll-out waves. Dashed vertical lines show
95% critical values of the distribution. Solid vertical line shows the observed t-stat from the true city
assignment. The regression includes prefecture-city FEs, week(quarter)-of-sample FEs, and region×year
FEs. Standard errors are clustered at the city level.
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Figure D.9: Illustration: Satellite AOD Oversampling

Notes: Left panel shows original MODIS AOD (10×10km) around Beijing on y2008 d243 (i.e., August 30,
2008). Right panel shows an overlay with data on y2008 d244. In both panels, darker colors indicate higher
pollution levels.
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Figure D.10: Total Air Emissions by Emission Deciles, Beijing Polluter Census 2007
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Notes: This graph shows total air emissions (in billion m3) by Beijing polluters in the k-th decile of annual
emission distribution according to the Polluter Census 2007. The sample includes about 440 polluters.
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Figure D.11: Heterogeneous Changes in Quarterly Mortality-Pollution Gradient
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(a) Heterogeneity by age groups
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(b) Heterogeneity by causes-of-death

Notes: Each range plot item shows the mortality-pollution elasticity change coefficient (i.e.,
Log(Pollution)×1(after monitoring)) from a separate regression using sub-group log mortality rate as the
outcome variable. All regressions control for prefectiry-city FEs and quarter-of-sample FEs. Range bars
show 95% confidence interval constructed from standard errors clustered at the prefecture-city level.
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Figure D.12: Changes in Quarterly Mortality-Pollution Gradient: Nonlinear Specification
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Notes: This graph shows residualized plot between logged mortality rate by ten equal bins of residualized
Log(Pollution) × 1(after monitoring). Conceptually, the slope across these dots corresponds to the
interactive coefficient (Log(Pollution) × 1(after monitoring)) in Table 3. All regressions control for
prefectiry-city FEs, quarter-of-year FEs, and year FEs.
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Figure D.13: Regression Discontinuity at the Huai River (2011-2012 Sample)
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Notes: Scatter plot in each panel shows the local means of the corresponding outcome variable with a bin size of 1 degree (Observations = 161). The
horizontal axis is the distance (in degree) to the north of the Huai River, following Ebenstein et al. (2017). Solid lines are from local linear
regressions estimated separately on each side of the river. Size of circles corresponds to total population in the distance bin. “Local” AOD = raw
AOD residualized of inverse-distance weighted PM2.5 from cities within 1,000 km radius.

D
-20



Table D.1: Characteristics of Cities by Monitoring Rollout Waves

(1) (2) (3)

Wave 1 Wave 2 Wave 3

Number of cities 74 116 177

Population (million) 7.05 3.90 2.90
(4.85) (2.10) (1.95)

GDP per capita (yuan) 69,836 42,881 27,400
(27,627) (23,110) (13143)

AOD level 0.665 0.600 0.456
(0.239) (0.242) (0.237)

PM2.5 level (ug/m3) 61.3 57.9 46.0
(22.1) (20.2) (17.4)

Industrial SO2 emissions (ton) 37,569 29,609 18,214
(40,186) (24,695) (17,550)

Average temperature (F) 59.7 58.0 55.3
(8.52) (9.59) (10.6)

Total precipitation (inches) 47.0 42.2 40.3
(21.9) (23.2) (24.4)

Average wind speed (m/s) 1.94 1.71 1.47
(0.63) (0.62) (0.68)

Notes: The underlying observations are at the city level. Standard deviations are in parentheses. All characteristics are
measured by 2011-2015 average, except for PM2.5 level (average of post-monitoring period) and Industrial SO2 emissions
(year 2006).
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Table D.2: Changes in Environment After Monitoring

Indep. var.: 1(after monitoring)

(1) (2) (3) (4)

Panel A. Pollution levels

Log(Pollution) 0.0015 0.0003 -0.0011 -0.0062
(0.0106) (0.0097) (0.0093) (0.0093)

Log(max Pollution) -0.0045 -0.0121 -0.0132 -0.0155
(0.0148) (0.0118) (0.0107) (0.0103)

Panel B. Political/regulatory environment

aN(anti-corruption cases) -0.037 -0.069 -0.032 -0.034
(0.052) (0.056) (0.028) (0.029)

bAge(mayor) 0.226 0.203 0.240 0.247
(0.184) (0.195) (0.191) (0.195)

cLikelihood(doc. mayor) -0.013 -0.011 -0.018 -0.018
(0.026) (0.027) (0.027) (0.028)

dN(“pollution regulation” news mention) -0.0048 -0.0074 -0.0067 -0.0071
(0.0064) (0.0070) (0.0072) (0.0073)

Panel C. Healthcare access

eLog N(hospitals per 1,000 people) -0.044 -0.047 -0.042 -0.042
(0.028) (0.029) (0.032) (0.032)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

aN(anti-corruption cases) mean = 0.24, sd = 0.75
bAge(mayor) mean = 50.8, sd = 3.63
cLikelihood(doc. mayor) mean = 0.234, sd = 0.423
dN(“pollution regulation” news) mean = 0.052, sd = 0.45
eN(hospitals per 1,000 people), annual frequency mean = 1.61, sd = 2.28

Notes: Row names show the dependent variable. “Log(Pollution)” is logged AOD in the city×week. “anti-corruption cases” are
the number of downfall local officials during the anti-corruption campaign. “doc. mayor” indicates whether the current mayor
of the city has a doctoral degree. “pollution regulation news” are the number of People’s Daily news articles that mention
both smog and the city name. “region” is a conventional partition of cities by location: North (36 cities), Northeast (38 cities),
East (105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Estimation data are at the city ×
weekly level, except for Panel C which uses city × annual observations of hospital counts. Standard errors are clustered at the
prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table D.3: Changes in Weekly Bank Card Transaction-Pollution Gradient: “Deferrable”
Consumptions

Dep. var.: Number of transactions per 10,000 active cards in a city×week

(1) (2) (3) (4)

Panel A. Merchant type = supermarkets (mean = 257.9)

Log(Pollution) 4.67 3.66 7.49*** 8.19***
(3.74) (4.07) (2.24) (2.76)

Log(Pollution) × 1(after monitoring) -11.3*** -11.3** -14.4*** -17.5***
(3.82) (4.71) (3.06) (3.80)

Panel B. Merchant type = dining (mean = 46.7)

Log(Pollution) 1.34* 1.62* 1.30** 1.59**
(0.784) (0.884) (0.510) (0.631)

Log(Pollution) × 1(after monitoring) -2.84*** -3.35*** -2.22*** -2.54***
(0.526) (0.615) (0.634) (0.757)

Panel C. Merchant type = entertainment (mean = 9.70)

Log(Pollution) 0.449 0.711* 0.409 0.498*
(0.318) (0.365) (0.258) (0.299)

Log(Pollution) × 1(after monitoring) -0.667 -1.10** -0.535 -0.686*
(0.422) (0.489) (0.342) (0.405)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

N 83,122 83,122 83,122 83,122

Notes: “Log(Pollution)” is logged AOD in the city×week. “region” is a conventional partition of cities by location: North (36
cities), Northeast (38 cities), East (105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Standard
errors are clustered at the prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table D.4: Changes in Weekly Bank Card Transaction-Pollution Gradient: “Scheduled”
Consumptions (Placebo Tests)

Dep. var.: Number of transactions per 10,000 active cards in a city×week

(1) (2) (3) (4)

Panel A. Merchant type = billings (mean = 59.4)

Log(Pollution) 0.252 0.725 2.64 3.51
(2.32) (2.70) (1.80) (2.16)

Log(Pollution) × 1(after monitoring) 1.04 -0.383 -3.74 -3.85
(3.89) (4.59) (2.98) (3.18)

Panel B. Merchant type = government services (mean = 12.4)

Log(Pollution) 0.367 0.329 0.206 0.554
(0.674) (0.724) (0.728) (0.849)

Log(Pollution) × 1(after monitoring) -0.565 -0.694 -0.541 -0.583
(0.992) (1.06) (1.03) (1.25)

Panel C. Merchant type = business-to-business wholesales (mean = 4.79)

Log(Pollution) -0.041 0.065 -0.050 -0.009
(0.385) (0.409) (0.338) (0.401)

Log(Pollution) × 1(after monitoring) 0.180 -0.119 0.071 0.068
(0.571) (0.600) (0.475) (0.559)

Panel D. Merchant type = cancer treatment centers (mean = 0.320)

Log(Pollution) 0.009 0.011 0.016 0.014
(0.012) (0.013) (0.011) (0.013)

Log(Pollution) × 1(after monitoring) -0.012 -0.017 -0.022 -0.022
(0.016) (0.018) (0.016) (0.018)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

N 83,122 83,122 83,122 83,122

Notes: “Log(Pollution)” is logged AOD in the city×week. “billings” include transactions in utilities, insurance contribution,
telecommunications and cable services. “government services” include transactions in political organizations, court costs, fines,
taxes, and consulate charges. “region” is a conventional partition of cities by location: North (36 cities), Northeast (38 cities),
East (105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered at the
prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table D.5: Changes in Weekly Bank Card Transaction-Pollution Gradient: Robustness
Checks

Coef. of interest: Log(Pollution)×1(after monitoring)

(1) (2) (3) (4)

Drop U.S. embassy/consulate cities -14.1* -16.6** -16.9** -21.0**
(7.18) (7.93) (8.29) (10.5)

Drop top 10% anti-corruption case cities -16.3* -18.8* -18.0** -23.4**
(8.62) (10.9) (8.14) (10.6)

Control for online shopping shares -20.7** -23.4** -19.9*** -25.8***
(8.43) (10.4) (7.63) (9.91)

Control for weather elements -22.3** -25.8** -24.3*** -30.6***
(9.17) (11.4) (8.23) (10.9)

Use weekly max pollution level -28.2*** -29.6*** -16.5** -21.0**
(9.76) (10.4) (7.33) (9.08)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

Notes: This table reports the changes in band card transactions - pollution gradient after monitoring. Each cell represents a
separate regression. The main effect Log(Pollution) term is not reported in the interest of space. Embassy cities include
Beijing, Chengdu, Guangzhou, and Shanghai where PM2.5 monitoring data were available before 2013. Weather controls
include linear terms of weekly temperature, precipitation, wind speed, barometric pressure, and their full interactions.
Standard errors are clustered at the prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table D.6: Changes in Weekly Bank Card Transaction-Pollution Gradient: Triple Difference

Dep. var.: Number of transactions per 10,000 active cards in a city×week

(1) (2) (3) (4)

Log(Pollution) × 1(after monitoring) 3.27 1.02 2.35 4.31
(7.78) (8.56) (7.35) (8.36)

Log(Pollution) × 1(after monitoring) × 1(Treated) -27.5** -27.2** -24.6** -14.5
(12.2) (12.8) (12.2 ) (15.9)

FEs: city-pair X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

N 193,563 193,563 193,563 193,563

Notes: “Log(Pollution)” is logged AOD in the city×week. Mean of dependent variable is 1,111.3 transactions per week per
10,000 cards. “1(Treated)” equals 1 for cities actually in the roll-out wave, 0 for neighboring cities not yet experienced roll-out.
“region” is a conventional partition of cities by location: North (36 cities), Northeast (38 cities), East (105 cities),
Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered at the prefecture-city level.
*: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table D.7: Regression Discontinuity at the Huai River (2011-2012 Sample)

Run. var.: Degrees north of the Huai River

(1) (2) (3)

Local polynomial: Linear Quadratic Cubic

Panel A. RD estimates: Log(Outcome) ∼ 1(North)

Log(Raw AOD) -0.059 -0.059 0.348*
(0.074) (0.093) (0.184)

Log(“Local” AOD) 0.326*** 0.351*** 0.247***
(0.157) (0.064) (0.096)

Log(PM10) 0.347*** 0.440** 0.474**
(0.130) (0.219) (0.239)

Log(Mortality rate) 0.219*** 0.240** 0.083
(0.072) (0.101) (0.173)

Panel B. IV estimates: Log(Mortality rate) ∼ L̂og(Pollution)

L̂og(“Local” AOD) 0.660* 0.591** 0.875
(0.344) (0.299) (0.650)

L̂og(PM10) 0.538 0.420 0.463
(0.348) (0.369) (0.427)

Notes: In panel A, each row corresponds to an outcome variable, and each cell reports coefficient for a dummy indicating
DSPs north of the Huai River in a separate regression (Observations = 161). “Local” AOD = raw AOD residualized of
inverse-distance weighted PM2.5 from cities within 1,000 km radius. PM10 data are from Ebenstein et al. (2017). Panel B
reports fuzzy RD estimates of the effect of Log(Pollution) on Log(Mortality). Columns 1-3 show RD with locally linear,
quadratic, and cubic control function for the running variable. All regressions use triangular kernel and Imbens and
Kalyanaraman (2012) bandwidth selection. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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